Skip to main content

Tritium Measurement II—Tritium in Plasma

  • Chapter
  • First Online:
Tritium: Fuel of Fusion Reactors
  • 1464 Accesses

Abstract

In D–T burning plasma , the fueled ion density ratio nD/nT is a key parameter to control the fusion output power. The requirements in ITER are briefly described, namely the range of density ratio, spatial locations (core, edge, wall, and divertor), and spatial/time resolutions. Diagnostic methods on neutrons from D–T reactions, the radio waves sensitive to the effective mass, charge exchange neutral flux of fuel particles, and passive and active spectroscopies for Balmer–Fulcher lines of fuel neutrals are introduced. Diagnostic principles, instrument of measurements, experimental results achieved in experimental devices, and prospects for ITER are described for each method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ITER Physics, Nuclear Fusion, 47 Chap. 7 (2007) S337–384

    Google Scholar 

  2. J. Kallne, P. Batisoni, G. Gorini, Rev. Sci. Instrum. 62, 2871–2874 (1991)

    Article  Google Scholar 

  3. L. Giacomelli et al., Nucl. Fusion 45, 1191–1201 (2005)

    Article  Google Scholar 

  4. K. Okada, K. Kondo et al., Rev. Sci. Instrum. 77, 10E726 (2006)

    Google Scholar 

  5. K. Okada, K. Kondo et al., J. Plasma Fusion Res. SERIES 8, 666–669 (2009)

    Google Scholar 

  6. H. Ikeji et al., Rev. Sci. Instrum. 68, 478–479 (1997)

    Article  Google Scholar 

  7. T. Stix, Waves in Plasmas, AIP 1992, p. 7

    Google Scholar 

  8. G.W. Watson et al., Plasma Phys. Controlled Fusion 46, 471–487 (2004)

    Article  Google Scholar 

  9. W.W. Heidbrink et al., Rev. Sci. Instrum. 75, 3862–3864 (2004)

    Article  Google Scholar 

  10. A. Fasoli et al., Plasma Phys. Controlled Fusion 44, B159–B172 (2002)

    Article  Google Scholar 

  11. T. Panis, et al., Nuclear Fusion, 50 084019 (9 pp) (2010)

    Google Scholar 

  12. D. Bettella et al., Plasma Phys. Controlled Fusion 45, 1893–1907 (2003)

    Article  Google Scholar 

  13. V.I. Afanasyev et al., Rev. Sci. Instrum. 74, 2338–2352 (2003)

    Article  Google Scholar 

  14. V.I. Afanasyev et al. Plasma Phys. Controlled Fusion 55, 045008(10 pp) (2013)

    Google Scholar 

  15. C.H. Skinner et al., Rev. Sci. Instrum. 66, 646–648 (1995)

    Article  Google Scholar 

  16. S. Brezinsek et al., Phys. Scr. T103, 63–67 (2003)

    Article  Google Scholar 

  17. S. Brezinsek et al., J. Nuclear Material 313–316, 967–971 (2003)

    Article  Google Scholar 

  18. G.H. Dieke, J. Molecular Spectroscopy 2, 494–517 (1958)

    Article  Google Scholar 

  19. S. Brezinsek et al., Plasma Phys. Controlled Fusion 47, 615–634 (2005)

    Article  Google Scholar 

  20. T. Shikama et al., Phys. Plasma 14, 072509 (2007)

    Article  Google Scholar 

  21. T. Sugie et al., J. Plasma Fusion Res. 79, 1051–1061 (2003)

    Article  Google Scholar 

  22. R. Reichle et al., Rev. Sci. Instrum. 83, 10E520 (2012)

    Article  Google Scholar 

  23. S. Salasca et al., Fusion Eng. Design 96–97, 932–937 (2015)

    Article  Google Scholar 

  24. M. Joanny et al., Rev. Sci. Instrum. 81, 10E108 (2010)

    Article  Google Scholar 

  25. A. Litnovsky, et al., Nuclear Fusion, 49 075014(8 pp) (2009)

    Google Scholar 

  26. J. Svensson, M. von Hellermann, R.W.T. Konig, Plasma Phys. Controlled Fusion 43, 389–403 (2001)

    Article  Google Scholar 

  27. W. Mandl et al., Plasma Phys. Controlled Fusion 35, 1373–1394 (1993)

    Article  Google Scholar 

  28. H. Anderson et al., Plasma Phys. Controlled Fusion 42, 781–806 (2000)

    Article  Google Scholar 

  29. A. Boileau, M. von Hellermann et al., J. Phys. B: At. Mpl. Opt. Phys. 22, L145–L152 (1989)

    Article  Google Scholar 

  30. M. von Hellermann et al., Phys. Scr. T120, 19–29 (2005)

    Article  Google Scholar 

  31. M. von Hellermann et al., Nucl. Instrum. Methods Phys. Res. A 623, 720–725 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Zushi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Zushi, H. (2017). Tritium Measurement II—Tritium in Plasma. In: Tanabe, T. (eds) Tritium: Fuel of Fusion Reactors . Springer, Tokyo. https://doi.org/10.1007/978-4-431-56460-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56460-7_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56458-4

  • Online ISBN: 978-4-431-56460-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics