Mathematical Analysis and Numerical Simulations for a Model of Atherosclerosis

  • Telma Silva
  • Jorge Tiago
  • Adélia SequeiraEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 183)


Atherosclerosis is a chronic inflammatory disease that occurs mainly in large and medium-sized elastic and muscular arteries. This pathology is essentially caused by the high concentration of low-density-lipoprotein (LDL) in the blood. It can lead to coronary heart disease and stroke, which are the cause of around 17.3 million deaths per year in the world. Mathematical modeling and numerical simulations are important tools for a better understanding of atherosclerosis and subsequent development of more effective treatment and prevention strategies. The atherosclerosis inflammatory process can be described by a model consisting of a system of three reaction-diffusion equations (representing the concentrations of oxidized LDL, macrophages and cytokines inside the arterial wall) with non-linear Neumann boundary conditions. In this work we prove the existence, uniqueness and boundedness of global solutions, using the monotone iterative method. Numerical simulations are performed in a rectangle representing the intima, to illustrate the mathematical results and the atherosclerosis inflammatory process.


Atherosclerosis Reaction-diffusion equations Nonlinear boundary conditions Upper and lower solutions Monotone sequences Existence-comparison theorem 



FCT (Fundação para a Ciência e a Tecnologia, Portugal) through the grant SFRH/BPD/66638/2009, the project EXCL/MAT-NAN/0114/2012 and the Research Center CEMAT-IST are gratefully acknowledged.


  1. 1.
    Mitchell, M.E., Sidawy, A.N.: The pathophysiology of atherosclerosis. Semin. Vasc. Surg. 3(11), 134–141 (1998)Google Scholar
  2. 2.
    Ross, R.: Atherosclerosis—an inflammatory disease. Mass. Med. Soc. 340(2), 115–126 (1999)Google Scholar
  3. 3.
    Mitrovska, S., Jovanova, S., Matthiesen, I., Libermans, C.: Atherosclerosis: Understanding Pathogenesis and Challenge for Treatment. Nova Science Publishers Inc., New York (2009)Google Scholar
  4. 4.
    Guretzki, H.J., Gerbitza, K.D., Olgemöller, B., Schleicher, E.: Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Elsevier 107(1), 15–24 (1994)Google Scholar
  5. 5.
    Mendis, S., Puska, P., Norrving, B.: Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization, Geneva (2011)Google Scholar
  6. 6.
    El Khatib, N., Génieys, S., Kazmierczak, B., Volpert, V.: Reaction-diffusion model of atherosclerosis development. J. Math. Biol. 65, 349–374 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Calvez, V., Ebde, A., Meunier, N., Raoult, A.: Mathematical and numerical modeling of the atherosclerotic plaque formation. ESAIM Proc. 28, 1–12 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Calvez, V., Houot, J., Meunier, N., Raoult, A., Rusnakova, G.: Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM Proc. 30, 1–14 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hao, W., Friedman, A.: The LDL-HDL profile determines the risk of atherosclerosis- a mathematical model. PLoS ONE 9(3), 1–15 (2014)Google Scholar
  10. 10.
    Liu, B., Tang, D.: Computer simulations of atherosclerosis plaque growth in coronary arteries. Mol. Cell. Biomech. 7(4), 193–202 (2010)Google Scholar
  11. 11.
    Filipovic, N., Nikolic, D., Saveljic, I., Milosevic, Z., Exarchos, T., Pelosi, G., Parodi, O.: Computer simulation of three-dimensional plaque formation and progression in the coronary artery. Comput. Fluids 88, 826–833 (2013)CrossRefGoogle Scholar
  12. 12.
    Silva, T., Sequeira, A., Santos, R., Tiago, J.: Mathematical modeling of atherosclerotic plaque formation coupled with a non-Newtonian model of blood flow. In: Hindawi Publishing Corporation Conference Papers in Mathematics (2013)Google Scholar
  13. 13.
    El Khatib, N., Génieys, S., Kazmierczak, B., Volpert, V.: Mathematical modeling of atherosclerosis as an inflammatory disease. Philos. Trans. R. Soc. A 367, 4877–4886 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Silva, T., Sequeira, A., Santos, R., Tiago, J.: Existence, uniqueness, stability and asymptotic behavior of solutions for a model of atherosclerosis, DCDS-S, AIMS, 9(1), 343–362 (2016)Google Scholar
  15. 15.
    Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)zbMATHGoogle Scholar
  16. 16.
    Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Springer-Verlag, Berlin Heidelberg (1979)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Mathematics and CEMAT, ISTULisboaLisbonPortugal

Personalised recommendations