Skip to main content

Effects of Ozone on Japanese Trees

  • Chapter
  • First Online:
Air Pollution Impacts on Plants in East Asia

Abstract

The effects of ozone (O3) on tree species in Japan have been studied since the 1970s. Based on the results from O3 fumigation studies, current ambient levels of O3 have negative impacts on the growth and physiological functions of Japanese forest tree species, although there is a big variation of O3 sensitivity between species. Stomatal O3 uptake is one of the key factors that can explain the differences in O3 sensitivity between species, and modeling of this factor has been intensively studied during the past decade. Although O3 generally induces stomatal closure, less efficient stomatal control, so-called stomatal sluggishness, is also induced by chronic exposure to O3. These opposite phenomena result in complex responses of stomata to O3. Detailed gas exchange analysis has revealed that O3-induced reductions in the photosynthetic rate of Japanese forest tree species were mainly due to a biochemical limitation in chloroplasts, but not due to stomatal closure. Risk assessments of the O3 impact on Japanese forest tree species, based on the results of experimental studies, national monitoring data of air pollutant concentrations, and vegetation surveys, indicate that the areas with high O3-induced reduction in growth do not necessarily correspond to the areas with relatively high O3 exposure. Free-air O3 fumigation systems in Japan were developed in 2011. Studies with this novel technology have clarified differences in leaf O3 sensitivities between canopy positions, and have estimated the effects of O3 on whole-canopy carbon budgets. As future perspectives, not only we need clarification of the physiological mechanisms of O3 impact, but we also need clarification of the effects of interactions between trees and other biotic factors such as diseases, herbivores, and symbiotic microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azuchi F, Kinose Y, Matsumura T, Kanomata T, Uehara Y, Kobayashi A, Yamaguchi M, Izuta T (2014) Modeling stomatal conductance and ozone uptake of Fagus crenata grown under different nitrogen loads. Environ Pollut 184:481–487

    Article  CAS  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed) Progress in photosynthesis research. Martinus-Nijhoff Publishers, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  • Brendley BW, Pell EJ (1998) Ozone-induced changes in biosynthesis of Rubisco and associated compensation to stress in foliage of hybrid poplar. Tree Physiol 18:81–90

    Article  CAS  Google Scholar 

  • Büker P, Feng Z, Uddling J, Briolat A, Alonso R, Braun S, Elvira S, Gerosa G, Karlsson PE, Le Thiec D, Marzuoli R, Mills G, Oksanen E, Wieser G, Wilkinson M, Emberson LD (2015) New flux based dose–response relationships for ozone for European forest tree species. Environ Pollut 206:163–174

    Article  CAS  Google Scholar 

  • Cairney JWG (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant and Soil 344:51–71

    Article  CAS  Google Scholar 

  • Díaz-de-Quijano M, Schaub M, Bassin S, Volk M, Peñuelas J (2012) Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after two years of free-air ozone fumigation. Environ Pollut 169:250–257

    Article  CAS  Google Scholar 

  • Dumont J, Cohen D, Gérard J, Jolivet Y, Dizengremel P, Le Thiec D (2014) Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes. Plant Cell Environ 37:2064–2076

    Article  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Evans JR, Seemann J (1989) The allocation of protein nitrogen in the photosynthetic apparatus: cost, consequences and control. In: Briggs WR (ed) Photosynthesis. Alan R. Liss, New York, pp 183–205

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Fine PVA, Ree RH (2006) Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am Nat 168:796–804

    Article  Google Scholar 

  • Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154

    Article  CAS  Google Scholar 

  • Fujinuma Y, Furukawa A, Totsuka T, Tazaki T (1987) Uptake of ozone by various street trees. Environ Cont Biol 25:31–40

    Article  CAS  Google Scholar 

  • Furukawa A (1991) Inhibition of photosynthesis of Populus euramericana and Helianthus annuus by SO2, NO2 and O3. Ecol Res 6:79–86

    Article  CAS  Google Scholar 

  • Furukawa A, Totsuka T, Katase M, Ushijima T (1983) Inhibition of photosynthesis of poplar species by ozone. J Jpn For Soc 65:321–326

    Google Scholar 

  • Grantz DA, Farrar JF (2000) Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton. Aust J Plant Physiol 27:859–868

    CAS  Google Scholar 

  • Hampp R, Nehls U (2001) Physiology of tree root/fungus symbiosis. In: Huttunen S, Heikkilä H, Bucher J, Sundberg B, Jarvis P, Matyssek R (eds) Trends in European forest tree physiology research. Kluwer Academic Publishers, Dordrecht, pp 53–62

    Chapter  Google Scholar 

  • Hirose T (2005) Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot 95:483–494

    Article  CAS  Google Scholar 

  • Hokkaido Forest Tree Breeding Association (2008) Forest tree breeding and forest genetic resources in Hokkaido. Hokkaido Forest Tree Breeding Association, Ebetsu (in Japanese)

    Google Scholar 

  • Hoshika Y, Paoletti E, Omasa K (2012a) Parameterization of Zelkova serrata stomatal conductance model to estimate stomatal ozone uptake in Japan. Atmos Environ 55:271–278

    Article  CAS  Google Scholar 

  • Hoshika Y, Wanatabe M, Inada N, Koike T (2012b) Ozone-induced stomatal sluggishness develops progressively in Siebold’s beech (Fagus crenata). Environ Pollut 166:152–156

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada N, Koike T (2012c) Modeling of stomatal conductance for estimating ozone uptake of (Fagus crenata) under experimentally enhanced free-air ozone exposure. Water Air Soil Pollut 223:3893–3901

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada N, Koike T (2013a) Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Ann Bot 112:1149–1158

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada N, Mao Q, Koike T (2013b) Photosynthetic response of early and late leaves of white birch (Betula platyphylla var. japonica) grown under free-air ozone exposure. Environ Pollut 182:242–247

    Article  CAS  Google Scholar 

  • Hoshika Y, Katata G, Deushi M, Watanabe M, Koike T, Paoletti E (2015a) Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci Rep 5:9871

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada N, Koike T (2015b) Effects of ozone-induced stomatal closure on ozone uptake and its changes due to leaf age in sun and shade leaves of Siebold’s beech. J Agric Meteorol 71:218–226

    Article  Google Scholar 

  • Hoshika Y, Watanabe M, Kitao M, Haberle K-H, Grams TEE, Koike T, Matyssek R (2015c) Ozone induces stomatal narrowing in European and Siebold’s beeches: a comparison between two experiments of free-air ozone exposure. Environ Pollut 196:527–533

    Article  CAS  Google Scholar 

  • Iio A, Fukasawa H, Nose Y, Kato S, Kakubari Y (2005) Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation. Tree Physiol 25:533–544

    Article  Google Scholar 

  • Izuta T (1998) Ecophysiological responses of Japanese forest tree species to ozone, simulated acid rain and soil acidification. J Plant Res 111:471–480

    Article  Google Scholar 

  • Izuta T (2003) Air pollution impacts on vegetation in Japan. In: Emberson L, Ashmore M, Murray F (eds) Air pollution impacts on crops and forests: a global assessment. Imperial College Press, London, pp 89–101

    Chapter  Google Scholar 

  • Izuta T (2006) Plants and environmental stresses. Corona Publishing, Tokyo (in Japanese)

    Google Scholar 

  • Izuta T (2012) Evaluation of ozone effects on plant based on leaf ozone uptake. J Jpn Soc Atmos Environ 47:A12–A15 (in Japanese)

    Article  CAS  Google Scholar 

  • Izuta T, Umemoto M, Horie K, Aoki M, Totsuka T (1996) Effects of ambient levels of ozone on growth, gas exchange rates and chlorophyll contents of Fagus crenata seedlings. J Jpn Soc Atmos Environ 31:95–105

    CAS  Google Scholar 

  • Jacob DJ (1999) Introduction to atmospheric chemistry. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Jarvis PG (1976) Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philos Trans Royal Soc London B 273:593–610

    Article  CAS  Google Scholar 

  • Kangasjärvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036

    Article  Google Scholar 

  • Karlsson PE, Uddling J, Braun S, Broadmeadow M, Elvira S, Gimeno BS, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2004) New critical levels for ozone effects on young trees based on AOT40 and stimulated cumulative leaf uptake of ozone. Atmos Environ 38:2283–2294

    Article  CAS  Google Scholar 

  • Karlsson PE, Örlander G, Langvall O, Uddling J, Hjorth U, Wiklander K, Areskoug B, Grenfelt P (2006) Negative impact of ozone on the stem basal area increment of mature Norway spruce in south Sweden. For Ecol Manage 232:146–151

    Article  Google Scholar 

  • Karlsson PE, Braun S, Broadmeadow M, Elvira S, Emberson L, Gimeno BS, Le Thiec D, Novak K, Oksanen E, Schaub M, Uddling J, Wilkinson M (2007) Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts. Environ Pollut 146:608–616

    Article  CAS  Google Scholar 

  • Karnosky D-F, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190

    Article  CAS  Google Scholar 

  • King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF (2005) Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168:623–635

    Article  CAS  Google Scholar 

  • Kinose Y, Azuchi F, Uehara Y, Kanomata T, Kobayashi A, Yamaguchi M, Izuta T (2014) Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla. Environ Pollut 194:235–245

    Article  CAS  Google Scholar 

  • Kitao M, Löw M, Heerdt C, Grams TEE, Häberle K-H, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544

    Article  CAS  Google Scholar 

  • Kitao M, Komatsu M, Yazaki K, Kitaoka S, Tobita H (2015) Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2. Environ Pollut 206:133–141

    Article  CAS  Google Scholar 

  • Kitaoka S, Koike T (2004) Invasion of broad-leaf tree species into a larch plantation: seasonal light environment, photosynthesis and nitrogen allocation. Physiol Plant 121:604–611

    Article  CAS  Google Scholar 

  • Kitaoka S, Watanabe M, Watanabe Y, Kayama M, Nomura M, Sasa K (2009a) Growth of regenerated tree seedlings associated with microclimatic change in a mature larch plantation after harvesting. Landsc Ecol Eng 5:137–145

    Article  Google Scholar 

  • Kitaoka S, Watanabe Y, Koike T (2009b) The effects of cleared larch canopy and nitrogen supply on gas exchange and leaf traits in deciduous broad-leaved tree seedlings. Tree Physiol 29:1503–1511

    Article  CAS  Google Scholar 

  • Kohno Y, Matsumura H (1999) Combined effect of simulated acid rain and ozone on the growth of Japanese conifer seedlings. J Jpn Soc Atmos Environ 34:74–85 (in Japanese)

    CAS  Google Scholar 

  • Kohno Y, Matsumura H, Ishii T, Izuta T (2005) Establishing critical levels of air pollutants for protecting East Asian vegetation, a challenge. In: Omasa K, Nouchi I, De Kok LJ (eds) Plant responses to air pollution and global change. Springer, Tokyo, pp 243–250

    Chapter  Google Scholar 

  • Koike T, Mao Q, Inada N, Kawaguchi K, Hoshika Y, Kita K, Watanabe M (2012) Growth and photosynthetic responses of cuttings of a hybrid larch (Larix gmelinii var. japonica × L. kaempferi) to elevated ozone and/or carbon dioxide. Asian J Atmos Environ 6:104–110

    Article  CAS  Google Scholar 

  • Koike T, Watanabe M, Hoshika Y, Kitao M, Matsumura H, Funada R, Izuta T (2013) Effects of ozone on forest ecosystems in East and Southeast Asia. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges: understanding and perspectives from forest research. Elsevier, Oxford, pp 371–390

    Chapter  Google Scholar 

  • Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impacts in trees. Environ Pollut 115:373–392

    Article  CAS  Google Scholar 

  • Lambers H III, Chapin FS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Landolt W, Günthardt-Goerg MS, Pfenninger I, Einig W, Hampp R, Maurer S, Matyssek R (1997) Effect of fertilization on ozone-induced change in the metabolism of birch (Betula pendula) leaves. New Phytol 137:389–397

    Article  CAS  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd ed. Elsevier, London

    Google Scholar 

  • Matsumura H (2001) Impacts of ambient ozone and/or acid mist on the growth of 14 tree species: an open-top chamber study conducted in Japan. Water Air Soil Pollut 130:959–964

    Article  Google Scholar 

  • Matsumura H, Kohno Y (2003) Effects of sulfur dioxide and/or ozone on Japanese evergreen broad-leaved tree species. Research report of Central Research Institute of Electric Power Industry U02021. (in Japanese with English summary)

    Google Scholar 

  • Matsumura H, Aoki H, Kohno Y, Izuta T, Totsuka T (1996) Effects of ozone on dry weight growth and gas exchange rate of Japanese cedar, Japanese cypress and Japanese zelkova seedlings. J Jpn Soc Atmos Environ 31:247–261 (in Japanese)

    CAS  Google Scholar 

  • Matsumura H, Kobayashi T, Kohno Y (1998) Effects of ozone and/or simulated acid rain on dry weight and gas exchange rates of Japanese cedar, Nikko fir, Japanese white birch and Japanese zelkova seedlings. J Jpn Soc Atmos Environ 33:16–35 (in Japanese)

    CAS  Google Scholar 

  • Matsumura H, Mikami C, Sakai Y, Murayama K, Izuta T, Yonekura T, Miwa M, Kohno Y (2005) Impacts of elevated O3 and/or CO2 on growth of Betula platyphylla, Betula ermanii, Fagus crenata, Pinus densiflora and Cryptomeria japonica seedlings. J Agric Meteorol 60:1121–1124

    Article  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404

    Article  CAS  Google Scholar 

  • Matyssek R, Bytnerowicz A, Karlsson PE, Paoletti E, Sanz M, Schaub M, Wieser G (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146:587–607

    Article  CAS  Google Scholar 

  • Mills G, Hayes F, Wilkinson S, Davies WJ (2009) Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. Glob Chang Biol 15:1522–1533

    Article  Google Scholar 

  • Mills G, Pleijel H, Büker P, Braun S, Emberson LD, Harmens H, Hayes F, Simpson D, Grünhage L, Karlsson PE, Danielsson H, Bermejo V, Gonzalez Fernandez I (2010) Mapping Critical Levels for Vegetation. Revision undertaken in Summer 2010 to include new flux-based critical levels and response functions for ozone, in: Mapping Manual 2004. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops

    Google Scholar 

  • Miwa M, Izuta T, Totsuka T (1993) Effects of simulated acid rain and/or ozone on the growth of Japanese cedar seedlings. J Jpn Soc Atmos Environ 28:279–287 (in Japanese)

    Google Scholar 

  • Monsi M, Saeki T (1953) Ãœber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  • Nakaji T, Izuta T (2001) Effects of ozone and/or excess soil nitrogen on growth, needle gas exchange rates and Rubisco contents of Pinus densiflora seedlings. Water Air Soil Pollut 130:971–976

    Article  Google Scholar 

  • Nakaji T, Kobayashi T, Kuroha M, Omori K, Matsumoto Y, Yonekura T, Watanabe K, Utriainen J, Izuta T (2004) Growth and nitrogen availability of red pine seedlings under high nitrogen load and elevated ozone. Water, Air, Soil Pollut, Focus 4:277–287

    Article  CAS  Google Scholar 

  • Niinemets U, Keenan TF, Hallik L (2015) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993

    Article  CAS  Google Scholar 

  • Nouchi I (2001) Plant responses to changing environment. Yokendo co. ltd., Tokyo (in Japanese)

    Google Scholar 

  • Nouchi I, Odaira T, Sawada T, Oguchi K, Komeiji T (1973) Plant ozone injury symptoms. J Jpn Soc Air Pollut 8:113–119 (In Japanese with English summary)

    CAS  Google Scholar 

  • Nunn AJ, Reiter UM, Häberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369

    Article  CAS  Google Scholar 

  • Ohwi J (1983) New atlas of Japanese plants. Shibundo, Tokyo (In Japanese)

    Google Scholar 

  • Oksanen E, Saleen A (1999) Ozone exposure results in various carry-over effects and prolonged reduction in biomass in Birch (Betula pendula Roth). Plant Cell Environ 22:1401–1411

    Article  CAS  Google Scholar 

  • Oksanen E, Kontunen-Soppela S, Riikonen J, Peltonen P, Uddling J, Vapaavuori E (2007) Northern environment predisposes birches to ozone damage. Plant Biol 9:191–196

    Article  CAS  Google Scholar 

  • Omasa K (1990) Study on changes in stomata and their surrounding cell using a non-destructive light microscope system: responses to air pollutants. J Agric Meteorol 45:251–257

    Article  Google Scholar 

  • Oßwald W, Fleischmann F, Treutter D (2012) Host-parasite interaction and trade-offs between growth – and defence-related metabolism under changing environments. In: Matyssek R, Schnyer H, Oßwald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants: resource allocation at multiple scales. Springer, Berlin, pp 53–83

    Chapter  Google Scholar 

  • Paludan-Müller G, Saxe H, Leverenz JW (1999) Responses to ozone in 12 provenances of European beech (Fagus sylvatica): genotypic variation and chamber effects on photosynthesis and dry-matter partitioning. New Phytol 144:261–273

    Article  Google Scholar 

  • Paoletti E, Grulke NE (2005) Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ Pollut 137:483–493

    Article  CAS  Google Scholar 

  • Pell EJ, Temple PJ, Friend AL, Mooney HA, Winner WE (1994) Compensation as a plant response to ozone and associated stresses: an analysis of ROPIS experiments. J Environ Qual 23:429–436

    Article  CAS  Google Scholar 

  • Pell EJ, Sinn JP, Brendley BW, Samuelson L, Vinten-Johansen C, Tien M, Skillman J (1999) Differential response of four tree species to ozone-induced acceleration of foliar senescence. Plant Cell Environ 22:779–790

    Article  CAS  Google Scholar 

  • Peltonen PA, Vapaavuori E, Julkunen-Tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob Chang Biol 11:1305–1324

    Article  Google Scholar 

  • Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under CO2 – and O3-enriched atmospheres. Nature 420:403–407

    Article  CAS  Google Scholar 

  • Poorter H, Niinemets Ãœ, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  Google Scholar 

  • Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070

    Article  CAS  Google Scholar 

  • Quoreshi AM, Maruyama Y, Koike T (2003) The role of mycorrhiza in forest ecosystems under CO2-enriched atmosphere. Eurasian J For Res 6:171–176

    Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    Article  CAS  Google Scholar 

  • Rodríguez-Calcerrada J, Reich PB, Rosenqvist E, Pardos JA, Cano FJ, Aranda I (2008) Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak. Tree Physiol 28:761–771

    Article  Google Scholar 

  • Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynth Res 39:351–368

    Article  CAS  Google Scholar 

  • Sakikawa T, Shi C, Nakamura M, Watanabe M, Oikawa M, Satoh F, Koike T (2016) Leaf phenology and insect grazing of Japanese white birch saplings grown under free-air ozone exposure. J Agric Meteorol 72:80–84

    Google Scholar 

  • Shan Y, Izuta T, Aoki M, Totsuka T (1997) Effects of O3 and soil acidification, alone and in combination, on growth, gas exchange rate and chlorophyll content of red pine seedlings. Water Air Soil Pollut 97:355–366

    CAS  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105

    Article  Google Scholar 

  • Takagi K, Ohara T (2003) Estimation of ozone impact on plants by damage functions in the Kanto area. J Jpn Soc Atmos Environ 38:205–216 (in Japanese with English summary)

    CAS  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    Article  CAS  Google Scholar 

  • Terazawa K, Koyama H (2008) Applied ecology for restoration of beech forests. Bun-ichi Sogo Shuppan, Tokyo (in Japanese)

    Google Scholar 

  • Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1993) Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh. and hybrid Populus L. I. In situ net photosynthesis, dark respiration and growth. New Phytol 124:627–636

    Article  CAS  Google Scholar 

  • Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1995) Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. Plant Cell Environ 18:895–905

    Article  CAS  Google Scholar 

  • Vanderstock A, Agathokleous E, Inoue W, Eguchi N, Nakamura M, Satoh F, Kanie S, Koike T (2016) Preliminary survey on insect grazing in white birch stands under free-air O3 fumigation. Boreal For Res 64:27–29

    Google Scholar 

  • Wang X, Qu L, Mao Q, Watanabe M, Hoshika Y, Koyama A, Kawaguchi K, Tamai Y, Koike T (2015) Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated O3 and CO2. Environ Pollut 197:116–126

    Article  CAS  Google Scholar 

  • Watanabe M, Yamaguchi M (2011) Risk assessment of ozone impact on 6 Japanese forest tree species with consideration of nitrogen deposition. Jpn J Ecol 61:89–96 (in Japanese)

    CAS  Google Scholar 

  • Watanabe M, Yamaguchi M, Iwasaki M, Matsuo N, Naba J, Tabe C, Matsumura H, Kohno Y, Izuta T (2006) Effects of ozone and/or nitrogen load on the growth of Larix kaempferi, Pinus densiflora and Cryptomeria japonica seedlings. J Jpn Soc Atmos Environ 41:320–334

    CAS  Google Scholar 

  • Watanabe M, Yamaguchi M, Tabe C, Iwasaki M, Yamashita R, Funada R, Fukami M, Matsumura H, Kohno Y, Izuta T (2007) Influences of nitrogen load on the growth and photosynthetic responses of Quercus serrata seedlings to O3. Trees 21:421–432

    Article  CAS  Google Scholar 

  • Watanabe M, Yamaguchi M, Matsumura H, Kohno Y, Izuta T (2008) Effects of ozone on growth and photosynthesis of Castanopsis sieboldii seedlings grown under different nitrogen loads. J Agric Meteorol 24:143–155

    Article  Google Scholar 

  • Watanabe M, Matsuo N, Yamaguchi M, Matsumura H, Kohno Y, Izuta T (2010a) Risk assessment of ozone impact on the carbon absorption of Japanese representative conifers. European J For Res 129:421–430

    Article  Google Scholar 

  • Watanabe M, Umemoto-Yamaguchi M, Koike T, Izuta T (2010b) Growth and photosynthetic response of Fagus crenata seedlings to ozone and/or elevated carbon dioxide. Landsc Ecol Eng 6:181–190

    Article  Google Scholar 

  • Watanabe M, Yamaguchi M, Matsumura H, Kohno Y, Izuta T (2012) Risk assessment of ozone impact on Fagus crenata in Japan: consideration of atmospheric nitrogen deposition. European J For Res 131:475–484

    Article  CAS  Google Scholar 

  • Watanabe M, Hoshika Y, Inada N, Wang X, Mao Q, Koike T (2013) Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan. Environ Pollut 174:50–56

    Article  CAS  Google Scholar 

  • Watanabe M, Hoshika Y, Inada N, Koike T (2014a) Canopy carbon budget of Siebold’s beech (Fagus crenata) sapling under free air ozone exposure. Environ Pollut 184:682–689

    Article  CAS  Google Scholar 

  • Watanabe M, Hoshika Y, Koike T (2014b) Photosynthetic responses of Monarch birch seedlings to differing timing of free air ozone fumigation. J Plant Res 127:339–345

    Article  CAS  Google Scholar 

  • Watanabe M, Kitaoka S, Eguchi N, Watanabe Y, Satomura T, Takagi K, Satoh F, Koike T (2014c) Photosynthetic traits and growth of Quercus mongolica var. crispula sprouts attacked by powdery mildew under free air CO2 enrichment. European J For Res 133:725–733

    Article  CAS  Google Scholar 

  • Watanabe M, Hoshika Y, Inada N, Koike T (2015) Difference in photosynthetic responses to free air ozone fumigation between upper and lower canopy leaves of Japanese oak (Quercus mongolica var. crispula) saplings. J Agric Meteorol 71:227–231

    Article  Google Scholar 

  • Wilkinson S, Davies W (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant community. Plant Cell Environ 33:510–525

    Article  CAS  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

    Article  CAS  Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Chang Biol 15:396–424

    Article  Google Scholar 

  • Yamaguchi M, Watanabe M, Iwasaki M, Tabe C, Matsumura H, Kohno Y, Izuta T (2007) Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. Trees 21:707–718

    Article  CAS  Google Scholar 

  • Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T (2010a) Effects of ozone on nitrogen metabolism in the leaves of Fagus crenata seedlings under different soil nitrogen loads. Trees 24:175–184

    Article  CAS  Google Scholar 

  • Yamaguchi T, Noguchi I, Eguchi M (2010b) Ambient ozone concentration around Lake Mashu, Hokkaido, Japan. Trans Meet Hokkaido Branch Jpn For Soc 58:123–124 (In Japanese)

    Google Scholar 

  • Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T (2011) Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian J Atmos Environ 5:65–78

    Article  CAS  Google Scholar 

  • Yonekura T, Dokiya Y, Fukami M, Izuta T (2001a) Effects of ozone and/or soil water stress on growth and photosynthesis of Fagus crenata seedlings. Water Air Soil Pollut 130:965–970

    Article  Google Scholar 

  • Yonekura T, Honda Y, Oksanen E, Yoshidome M, Watanabe M, Funada R, Koike T, Izuta T (2001b) The influences of ozone and soil water stress, singly and in combination, on leaf gas exchange rates, leaf ultrastructural characteristics and annual ring width of Fagus crenata seedlings. J Jpn Soc Atmos Environ 36:333–351

    CAS  Google Scholar 

  • Yonekura T, Yoshidome M, Watanabe M, Honda Y, Ogiwara I, Izuta T (2004) Carry-over effects of ozone and water stress on leaf phenological characteristics and bud frost hardiness of Fagus crenata seedlings. Trees 18:581–588

    Article  CAS  Google Scholar 

  • Zhang W, Feng Z, Wang X, Niu J (2012) Responses of native broadleaved woody species to elevated ozone in subtropical China. Environ Pollut 163:149–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Watanabe, M., Hoshika, Y., Koike, T., Izuta, T. (2017). Effects of Ozone on Japanese Trees. In: Izuta, T. (eds) Air Pollution Impacts on Plants in East Asia. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56438-6_5

Download citation

Publish with us

Policies and ethics