Abstract
We investigated the controllable range of bandgap energy, E g and optical absorption characteristic of silicon quantum nanodisks (QNDs) formed by a top-down method described in previous chapter, which enables precise control of geometrical parameters. By embedding by Silicon Carbides, the wave function of the QNDs overlaps each other, and a wide miniband was formed, which enhance only the photon absorption but carrier transport in the stacked QNDs. The high optical absorption and conductivity properties were verified by fabricating p–i–n solar cells with Si-NDs, and efficient carrier generation and high electrical conductivity in our Si-ND structure were surely clarified. The top-down process was also applied to form quantum dots photonic devices based on III–V compound semiconductors. We fabricated GaAs nanodisks (NDs) with a diameter of sub-20 nm. The GaAs NDs were embedded with AlGaAs regrown by metal organic vapor phase epitaxy. Light emitting diodes were fabricated using the NDs, exhibiting a narrow spectral width of 38 nm with high-intensity as a result of small size deviation of NDs and superior quality of GaAs/AlGaAs surface formed by neutral beam etching.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
L. Zhuang, L. Guo, S.Y. Chou, Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl. Phys. Lett. 72, 1205 (1998)
R.L. Sellin, C. Ribbat, M. Grundmann, N.N. Ledentsov, D. Bimberg, Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 78, 1207 (2001)
C. Schneider, M. Strauß, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, A. Forchel, Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92, 183101 (2001)
H. Ishikuro, T. Hiramoto, Quantum mechanical effects in the silicon quantum dot in a single-electron transistor. Appl. Phys. Lett. 71, 3691 (1997)
V. Wood, M.J. Panzer, J.M. Caruge, J.E. Halpert, M.G. Bawendi, V. Bulovic, Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett. 10, 24 (2010)
S. Chakrabarti, M.A. Holub, P. Bhattacharya, T.D. Mishima, M.B. Santos, M.B. Johnson, D.A. Blom, Spin-polarized light-emitting diodes with Mn-doped InAs quantum dot nanomagnets as a spin aligner. Nano Lett. 5, 209 (2005)
A. Luqu, A. Marti, Photovoltaics: towards the intermediate band. Nat. Photon. 5, 137 (2011)
A. Luque, A. Marti, The intermediate band solar cell: progress toward the realization of an attractive concept. Adv. Mater. 22, 160 (2009)
H. Yu, J. Li, R.A. Loomis, P.C. Gibbons, L.W. Wang, W.E. Buhro, Cadmium selenide quantum wires and the transition from 3D to 2D confinement. J. Am. Chem. Soc. 125, 16168 (2003)
A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007 (2008)
B. Pejova, I. Grozdanov, Three-dimensional confinement effects in semiconducting zinc selenide quantum dots deposited in thin-film form. Mater. Chem. Phys. 90, 35 (2005)
W. Pan, N. Usami, K. Hara, N. Arifuku, M. Matsui, S. Matsushima, PVSEC21, 2D-1P-04 (Hukuoka, Japan, 2011)
S. Yamada, Y. Kurokawa, S. Miyajima, A. Yamada, M. Konagai. High open-circuit voltage oxygen-containing silicon quantum dots superlattice solar cells, in Proceeding of the 35th IEEE Photovoltaic Specialists Conference, 317, Honolulu, HI (2010)
G. Conibeer, M.A. Green, E.C. Cho, D. König, Y.H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, D. Mansfield, Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516, 6748 (2008)
D. Bimberg, Semiconductor Nanostructures (Springer, Berlin, 2008)
Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982). doi:10.1063/1.92959
M. Asada, Y. Miyamoto, Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915 (1986). doi:10.1109/JQE.1986.1073149
P.G. Eliseev, H. Li, A. Stintz, G.T. Liu, T.C. Newell, K.J. Malloy, L.F. Lester, Appl. Phys. Lett. 77, 262 (2000). doi:10.1063/1.126944
K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, Jpn. J. Appl. Phys. Part 2(43), L1124 (2004). doi:10.1143/JJAP.43.L1124
M. Igarashi, M.F. Budiman, W. Pan, W. Hu, Y. Tamura, M.E. Syazwan, N. Usami, S. Samukawa, Nanotechnology 24, z015301 (2013)
S. Samukawa, K. Sakamoto, K. Ichiki, Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source. J. Vac. Sci. Technol. A 20, 1566 (2002)
S. Samukawa, K. Sakamoto, K. Ichiki, High-efficiency low energy neutral beam generation using negative ions in pulsed plasma. Jpn. J. Appl. Phys. 40, L997 (2001)
D.M.T. Kuo, G.Y. Guo, Y.C. Chang, Tunneling current through a quantum dot array. Appl. Phys. Lett. 79, 3851 (2001)
A. Higo, T. Kiba, Y. Tamura, C. Thomas, J. Takayama, Y. Wang, H. Sodabanlu, M. Sugiyama, Y. Nakano, I. Yamashita, A. Murayama, S. Samukawa, Scientific Reports, vol. 5 (2015), p. 9371
S. Samukawa, Ultimate top-down etching processes for future nanoscale devices: advanced neutral-beam etching. Jpn. J. Appl. Phys. 45, 2395 (2006)
X.Y. Wang, C.H. Huang, R. Tsukamoto, P.A. Mortemousque, K. Itoh, Y. Ohno, S. Samukawa, Damage-free top-down processes for fabricating two-dimensional arrays of 7 nm GaAs nanodiscs using bio-templates and neutral beam etching. Nanotechnology 22, 365301 (2011)
Y. Tamura, T. Kaizu, T. Kiba, M. Igarashi, R. Tsukamoto, A. Higo, W. Hu, C. Thomas, M.E. Fauzi, T. Hoshii, I. Yamashita, Y. Okada, A. Murayama, S. Samukawa, Quantum size effects in GaAs nanodisks fabricated using a combination of the bio-template technique and neutral beam etching. Nanotechnology 24, 285301 (2013)
C. Thomas, Y. Tamura, M.E. Syazwan, A. Higo, S. Samukawa, Oxidation states of GaAs surface and their effects on neutral beam etching during nanopillar fabrication. J. Phys. D: Appl. Phys. 47, 215203 (2014)
R. Tsukamoto, M. Godonoga, R. Matsuyama, M. Igarashi, J.G. Heddle, S. Samukawa, I. Yamashita, Langmuir 29, 12737 (2013)
R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, D. Bimberg, J. Electron. Mater. 28, 520 (1999)
G. Gelinas, A. Lanacer, R. Leonelli, R.A. Masut, S. Raymond, P.J. Poole, Phys. Rev. B 81, 235426 (2010)
N.A. Jahan, C. Hermannstadter, J.H. Huh, H. Sasakura, T.J. Rotter, P. Ahirwar, G. Balakrishnan, K. Akahane, M. Sasaki, H. Kumano, I. Suemune, J. Appl. Phys. 113, 033506 (2013)
M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.) 1996 Handbook Series of Semiconductor Parameters, vol. 2: Ternary and Quaternary III–V Compounds (World Sci Publ Co)
M. Grundmann, D. Bimberg, Phys. Rev. B 55, 9740 (1997)
COMSOL Multiphysics. http://www.comsol.com/
G. Raino, A. Salhi, V. Tasco, R. Intartaglia, R. Cingolani, Y. Rouillard, E. Tournie, M. De Giorgi, Appl. Phys. Lett. 92, 101931 (2008)
G. Trevisi, L. Seravalli, P. Frigeri, C. Bocchi, V. Grillo, L. Nasi, I. Suarez, D. Rivas, G. Muñoz-Matutano, J. Martinez-Pastor, Cryst. Res. Technol. 46, 801 (2011)
H. Gotoh, H. Ando, T. Takagahara, J. Appl. Phys. 81, 1785 (1997)
H. Gotoh, H. Kamada, H. Ando, J. Temmyo, Jpn. J. Appl. Phys. 42, 3340 (2003)
M. Gurioli, A. Vinattieri, M. Zamfirescu, M. Colocci, S. Sanguinetti, R. Notzel, Phys. Rev. B 73, 085302 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Japan
About this chapter
Cite this chapter
Samukawa, S. (2016). Fabrication of 3D Quantum Dot Array by Fusion of Biotemplate and Neutral Beam Etching II: Application to QD Solar Cells and Laser/LED. In: Sone, J., Tsuji, S. (eds) Intelligent Nanosystems for Energy, Information and Biological Technologies. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56429-4_10
Download citation
DOI: https://doi.org/10.1007/978-4-431-56429-4_10
Published:
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-56427-0
Online ISBN: 978-4-431-56429-4
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)