Skip to main content

Fabrication of 3D Quantum Dot Array by Fusion of Biotemplate and Neutral Beam Etching II: Application to QD Solar Cells and Laser/LED

  • Chapter
  • First Online:
Intelligent Nanosystems for Energy, Information and Biological Technologies
  • 695 Accesses

Abstract

We investigated the controllable range of bandgap energy, E g and optical absorption characteristic of silicon quantum nanodisks (QNDs) formed by a top-down method described in previous chapter, which enables precise control of geometrical parameters. By embedding by Silicon Carbides, the wave function of the QNDs overlaps each other, and a wide miniband was formed, which enhance only the photon absorption but carrier transport in the stacked QNDs. The high optical absorption and conductivity properties were verified by fabricating p–i–n solar cells with Si-NDs, and efficient carrier generation and high electrical conductivity in our Si-ND structure were surely clarified. The top-down process was also applied to form quantum dots photonic devices based on III–V compound semiconductors. We fabricated GaAs nanodisks (NDs) with a diameter of sub-20 nm. The GaAs NDs were embedded with AlGaAs regrown by metal organic vapor phase epitaxy. Light emitting diodes were fabricated using the NDs, exhibiting a narrow spectral width of 38 nm with high-intensity as a result of small size deviation of NDs and superior quality of GaAs/AlGaAs surface formed by neutral beam etching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Zhuang, L. Guo, S.Y. Chou, Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl. Phys. Lett. 72, 1205 (1998)

    Article  Google Scholar 

  2. R.L. Sellin, C. Ribbat, M. Grundmann, N.N. Ledentsov, D. Bimberg, Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 78, 1207 (2001)

    Article  Google Scholar 

  3. C. Schneider, M. Strauß, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, A. Forchel, Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92, 183101 (2001)

    Article  Google Scholar 

  4. H. Ishikuro, T. Hiramoto, Quantum mechanical effects in the silicon quantum dot in a single-electron transistor. Appl. Phys. Lett. 71, 3691 (1997)

    Article  Google Scholar 

  5. V. Wood, M.J. Panzer, J.M. Caruge, J.E. Halpert, M.G. Bawendi, V. Bulovic, Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett. 10, 24 (2010)

    Article  Google Scholar 

  6. S. Chakrabarti, M.A. Holub, P. Bhattacharya, T.D. Mishima, M.B. Santos, M.B. Johnson, D.A. Blom, Spin-polarized light-emitting diodes with Mn-doped InAs quantum dot nanomagnets as a spin aligner. Nano Lett. 5, 209 (2005)

    Article  Google Scholar 

  7. A. Luqu, A. Marti, Photovoltaics: towards the intermediate band. Nat. Photon. 5, 137 (2011)

    Article  Google Scholar 

  8. A. Luque, A. Marti, The intermediate band solar cell: progress toward the realization of an attractive concept. Adv. Mater. 22, 160 (2009)

    Article  Google Scholar 

  9. H. Yu, J. Li, R.A. Loomis, P.C. Gibbons, L.W. Wang, W.E. Buhro, Cadmium selenide quantum wires and the transition from 3D to 2D confinement. J. Am. Chem. Soc. 125, 16168 (2003)

    Article  Google Scholar 

  10. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007 (2008)

    Article  Google Scholar 

  11. B. Pejova, I. Grozdanov, Three-dimensional confinement effects in semiconducting zinc selenide quantum dots deposited in thin-film form. Mater. Chem. Phys. 90, 35 (2005)

    Article  Google Scholar 

  12. W. Pan, N. Usami, K. Hara, N. Arifuku, M. Matsui, S. Matsushima, PVSEC21, 2D-1P-04 (Hukuoka, Japan, 2011)

    Google Scholar 

  13. S. Yamada, Y. Kurokawa, S. Miyajima, A. Yamada, M. Konagai. High open-circuit voltage oxygen-containing silicon quantum dots superlattice solar cells, in Proceeding of the 35th IEEE Photovoltaic Specialists Conference, 317, Honolulu, HI (2010)

    Google Scholar 

  14. G. Conibeer, M.A. Green, E.C. Cho, D. König, Y.H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, D. Mansfield, Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516, 6748 (2008)

    Article  Google Scholar 

  15. D. Bimberg, Semiconductor Nanostructures (Springer, Berlin, 2008)

    Book  Google Scholar 

  16. Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982). doi:10.1063/1.92959

    Article  Google Scholar 

  17. M. Asada, Y. Miyamoto, Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915 (1986). doi:10.1109/JQE.1986.1073149

    Article  Google Scholar 

  18. P.G. Eliseev, H. Li, A. Stintz, G.T. Liu, T.C. Newell, K.J. Malloy, L.F. Lester, Appl. Phys. Lett. 77, 262 (2000). doi:10.1063/1.126944

    Article  Google Scholar 

  19. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, Jpn. J. Appl. Phys. Part 2(43), L1124 (2004). doi:10.1143/JJAP.43.L1124

    Article  Google Scholar 

  20. M. Igarashi, M.F. Budiman, W. Pan, W. Hu, Y. Tamura, M.E. Syazwan, N. Usami, S. Samukawa, Nanotechnology 24, z015301 (2013)

    Article  Google Scholar 

  21. S. Samukawa, K. Sakamoto, K. Ichiki, Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source. J. Vac. Sci. Technol. A 20, 1566 (2002)

    Article  Google Scholar 

  22. S. Samukawa, K. Sakamoto, K. Ichiki, High-efficiency low energy neutral beam generation using negative ions in pulsed plasma. Jpn. J. Appl. Phys. 40, L997 (2001)

    Article  Google Scholar 

  23. D.M.T. Kuo, G.Y. Guo, Y.C. Chang, Tunneling current through a quantum dot array. Appl. Phys. Lett. 79, 3851 (2001)

    Article  Google Scholar 

  24. A. Higo, T. Kiba, Y. Tamura, C. Thomas, J. Takayama, Y. Wang, H. Sodabanlu, M. Sugiyama, Y. Nakano, I. Yamashita, A. Murayama, S. Samukawa, Scientific Reports, vol. 5 (2015), p. 9371

    Google Scholar 

  25. S. Samukawa, Ultimate top-down etching processes for future nanoscale devices: advanced neutral-beam etching. Jpn. J. Appl. Phys. 45, 2395 (2006)

    Google Scholar 

  26. X.Y. Wang, C.H. Huang, R. Tsukamoto, P.A. Mortemousque, K. Itoh, Y. Ohno, S. Samukawa, Damage-free top-down processes for fabricating two-dimensional arrays of 7 nm GaAs nanodiscs using bio-templates and neutral beam etching. Nanotechnology 22, 365301 (2011)

    Google Scholar 

  27. Y. Tamura, T. Kaizu, T. Kiba, M. Igarashi, R. Tsukamoto, A. Higo, W. Hu, C. Thomas, M.E. Fauzi, T. Hoshii, I. Yamashita, Y. Okada, A. Murayama, S. Samukawa, Quantum size effects in GaAs nanodisks fabricated using a combination of the bio-template technique and neutral beam etching. Nanotechnology 24, 285301 (2013)

    Google Scholar 

  28. C. Thomas, Y. Tamura, M.E. Syazwan, A. Higo, S. Samukawa, Oxidation states of GaAs surface and their effects on neutral beam etching during nanopillar fabrication. J. Phys. D: Appl. Phys. 47, 215203 (2014)

    Google Scholar 

  29. R. Tsukamoto, M. Godonoga, R. Matsuyama, M. Igarashi, J.G. Heddle, S. Samukawa, I. Yamashita, Langmuir 29, 12737 (2013)

    Article  Google Scholar 

  30. R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, D. Bimberg, J. Electron. Mater. 28, 520 (1999)

    Article  Google Scholar 

  31. G. Gelinas, A. Lanacer, R. Leonelli, R.A. Masut, S. Raymond, P.J. Poole, Phys. Rev. B 81, 235426 (2010)

    Article  Google Scholar 

  32. N.A. Jahan, C. Hermannstadter, J.H. Huh, H. Sasakura, T.J. Rotter, P. Ahirwar, G. Balakrishnan, K. Akahane, M. Sasaki, H. Kumano, I. Suemune, J. Appl. Phys. 113, 033506 (2013)

    Article  Google Scholar 

  33. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.) 1996 Handbook Series of Semiconductor Parameters, vol. 2: Ternary and Quaternary III–V Compounds (World Sci Publ Co)

    Google Scholar 

  34. M. Grundmann, D. Bimberg, Phys. Rev. B 55, 9740 (1997)

    Article  Google Scholar 

  35. COMSOL Multiphysics. http://www.comsol.com/

  36. G. Raino, A. Salhi, V. Tasco, R. Intartaglia, R. Cingolani, Y. Rouillard, E. Tournie, M. De Giorgi, Appl. Phys. Lett. 92, 101931 (2008)

    Article  Google Scholar 

  37. G. Trevisi, L. Seravalli, P. Frigeri, C. Bocchi, V. Grillo, L. Nasi, I. Suarez, D. Rivas, G. Muñoz-Matutano, J. Martinez-Pastor, Cryst. Res. Technol. 46, 801 (2011)

    Article  Google Scholar 

  38. H. Gotoh, H. Ando, T. Takagahara, J. Appl. Phys. 81, 1785 (1997)

    Article  Google Scholar 

  39. H. Gotoh, H. Kamada, H. Ando, J. Temmyo, Jpn. J. Appl. Phys. 42, 3340 (2003)

    Article  Google Scholar 

  40. M. Gurioli, A. Vinattieri, M. Zamfirescu, M. Colocci, S. Sanguinetti, R. Notzel, Phys. Rev. B 73, 085302 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Samukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Samukawa, S. (2016). Fabrication of 3D Quantum Dot Array by Fusion of Biotemplate and Neutral Beam Etching II: Application to QD Solar Cells and Laser/LED. In: Sone, J., Tsuji, S. (eds) Intelligent Nanosystems for Energy, Information and Biological Technologies. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56429-4_10

Download citation

Publish with us

Policies and ethics