Skip to main content

Computer Assisted Verification of the Eigenvalue Problem for One-Dimensional Schrödinger Operator

  • Conference paper
  • First Online:
  • 595 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 166))

Abstract

We propose a rigorous computational method for verifying the isolated eigenvalues of one-dimensional Schrödinger operator containing a periodic potential and a perturbation which decays exponentially at ±. We show how the original eigenvalue problem can be reformulated as the problem of finding a connecting orbit in a Lagrangian-Grassmanian. Based on the idea of the Maslov theory for Hamiltonian systems, we set up an integer-valued topological measurement, the rotation number of the orbit in the resulting one-dimensional projective space. Combining the interval arithmetic method for dynamical systems, we demonstrate a computer-assisted proof for the existence of isolated eigenvalues within the first spectral gap.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbondandolo, A.: Morse Theory for Hamiltonian Systems. Chapman Hall/CRC, Boca Raton (2001)

    MATH  Google Scholar 

  2. Alexander, J.W., Gardner, R., Jones, C.K.R.T.: A topological invariant arising in the stability analysis of traveling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Arnol’d, VI.: Characteristic class entering in quantization conditions. Funct. Anal. Appl. 1, 1–13 (1967)

    Article  MATH  Google Scholar 

  4. Arnol’d, VI.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)

    Book  MATH  Google Scholar 

  5. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. HRW, New York (1976)

    MATH  Google Scholar 

  6. Chardard, F., Dias, F., Bridges, T.J.: Fast computation of the Maslov index for hyperbolic periodic orbits. J. Phys. A: Math. Gen. 39, 14545–14557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chardard, F., Dias, F., Bridges, T.J.: Computing the Maslov index of solitary waves. Part 1: Hamiltonian systems on a 4-dimensional phase space. Physica D 238, 1841–1867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coddington, E.A., Levinson N.: Theory of Ordinary Differential Equations, vol. XII. McGill-Hill, New York/Toront/London (1955)

    MATH  Google Scholar 

  9. Computer Assisted Proofs in Dynamics Group (CAPD) (website). http://capd.ii.uj.edu.pl/index.php

  10. Davies, E., Plum, M.: Spectral pollution. IMA J. Numer. Anal. 24, 417–438 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deift, P.A., Hempel, R.: On the existence of eigenvalues of the Schrödinger operator H −λW in a gap of σ(H). Commun. Math. Phys. 103, 461–490 (1986). doi:10.1006/jfan.1999.3542

    Article  MathSciNet  MATH  Google Scholar 

  12. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Achademic Press, Edinburgh (1973)

    MATH  Google Scholar 

  13. Hempel, R.: On the asymptotic distribution of the eigenvalue branches of a Shrödinger operator H −λW in a spectral gap of H. J. Reine Angew. Math. 399, 38–59 (1989)

    Google Scholar 

  14. Kato, T.: Perturbation Theory for Linear Operators. Reprint of the 1980 edition, Springer, Berlin/Heidelberg (1995)

    Google Scholar 

  15. Nagatou, K., Plum, M., Nakao, M.: Eigenvalue excluding for perturbed-periodic one-dimensional Schrödinger operators. Proc. R. Soc. A 159 (2011). doi:10.1098/rspa.2011.0159

    Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Kaori Nagatou for the helpful suggestions. Special thanks go to Professor Yasumasa Nishiura and Takashi Teramoto for many valuable comments, and we are also grateful to the referees for suggesting several improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayuki Sekisaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Sekisaka, A., Nii, S. (2016). Computer Assisted Verification of the Eigenvalue Problem for One-Dimensional Schrödinger Operator. In: Nishiura, Y., Kotani, M. (eds) Mathematical Challenges in a New Phase of Materials Science. Springer Proceedings in Mathematics & Statistics, vol 166. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56104-0_8

Download citation

Publish with us

Policies and ethics