Skip to main content

Topological Analysis of the Diblock Copolymer Equation

  • Conference paper
  • First Online:
Mathematical Challenges in a New Phase of Materials Science

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 166))

Abstract

We demonstrate how topological methods can be used to study pattern formation and pattern evolution in phase-field models of materials science. In the context of the diblock copolymer model for microphase separation, we will present new quantitative results on the microstructure topology during the initial phase separation from a homogeneous state, both for a deterministic and a stochastic version of the model. We also describe the long-term dynamics of the model and associated questions of multistability, which can be addressed using rigorous topological methods aimed at determining the structure of the global attractor of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume for the purposes of this survey that equilibrium solutions are generally hyperbolic, i.e., the linearization of the evolution equation at the stationary solutions has no zero eigenvalue.

  2. 2.

    We assume again that the equilibrium is hyperbolic, which is true away from the bifurcation points.

References

  1. Bahiana, M., Oono, Y.: Cell dynamical system approach to block copolymers. Phys. Rev. A 41, 6763–6771 (1990)

    Article  Google Scholar 

  2. Bates, P.W., Fife, P.C.: The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53 (4), 990–1008 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blömker, D., Gawron, B., Wanner, T.: Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discret. Contin. Dyn. Syst. Ser. A 27 (1), 25–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blömker, D., Maier-Paape, S., Wanner, T.: Phase separation in stochastic Cahn-Hilliard models. In: Miranville, A. (ed.) Mathematical Methods and Models in Phase Transitions, pp. 1–41. Nova Science Publishers, New York (2005)

    Google Scholar 

  5. Blömker, D., Maier-Paape, S., Wanner, T.: Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation. Trans. Am. Math. Soc. 360 (1), 449–489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Google Scholar 

  7. Choksi, R., Peletier, M.A., Williams, J.F.: On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional. SIAM J. Appl. Math. 69 (6), 1712–1738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choksi, R., Ren, X.: On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Stat. Phys. 113, 151–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. CHomP: Computational Homology Project. http://chomp.rutgers.edu (2015)

  10. Cochran, G.S., Wanner, T., Dłotko, P.: A randomized subdivision algorithm for determining the topology of nodal sets. SIAM J. Sci. Comput. 35 (5), B1034–B1054 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cook, H.: Brownian motion in spinodal decomposition. Acta Metall. 18, 297–306 (1970)

    Article  Google Scholar 

  12. Day, S., Kalies, W.D., Mischaikow, K., Wanner, T.: Probabilistic and numerical validation of homology computations for nodal domains. Electron. Res. Announcements Am. Math. Soc. 13, 60–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Day, S., Kalies, W.D., Wanner, T.: Verified homology computations for nodal domains. SIAM J. Multiscale Model. Simul. 7 (4), 1695–1726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Desi, J.P., Edrees, H., Price, J., Sander, E., Wanner, T.: The dynamics of nucleation in stochastic Cahn-Morral systems. SIAM J. Appl. Dyn. Syst. 10 (2), 707–743 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Desi, J.P., Sander, E., Wanner, T.: Complex transient patterns on the disk. Discret. Contin. Dyn. Syst. Ser. A 15 (4), 1049–1078 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dłotko, P., Kaczynski, T., Mrozek, M., Wanner, T.: Coreduction homology algorithm for regular CW-complexes. Discret. Comput. Geom. 46 (2), 361–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Doedel, E.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. In: Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980), vol. 30, pp. 265–284 (1981)

    Google Scholar 

  18. Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. 32 (1), 1–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Edelsbrunner, H., Harer, J.L.: Computational Topology. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  20. Farahmand, K.: Topics in Random Polynomials. Pitman Research Notes in Mathematics, vol. 393. Longman, Harlow (1998)

    Google Scholar 

  21. Gameiro, M., Mischaikow, K., Kalies, W.: Topological characterization of spatial-temporal chaos. Phys. Rev. E 70 (3), 035,203, 4 (2004)

    Google Scholar 

  22. Gameiro, M., Mischaikow, K., Wanner, T.: Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation. Acta Materialia 53 (3), 693–704 (2005)

    Article  Google Scholar 

  23. Grinfeld, M., Novick-Cohen, A.: Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments. Proc. R. Soc. Edinb. 125A, 351–370 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V.: Discrete Morse theoretic algorithms for computing homology of complexes and maps. Found. Comput. Math. 14 (1), 151–184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hyde, J.M., Miller, M.K., Hetherington, M.G., Cerezo, A., Smith, G.D.W., Elliott, C.M.: Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — II. Development of domain size and composition amplitude. Acta Metallurgica et Materialia 43, 3403–3413 (1995)

    Article  Google Scholar 

  26. Hyde, J.M., Miller, M.K., Hetherington, M.G., Cerezo, A., Smith, G.D.W., Elliott, C.M.: Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — III. Development of morphology. Acta Metallurgica et Materialia 43, 3415–3426 (1995)

    Article  Google Scholar 

  27. Johnson, I., Sander, E., Wanner, T.: Branch interactions and long-term dynamics for the diblock copolymer model in one dimension. Discret. Contin. Dyn. Syst. Ser. A 33 (8), 3671–3705 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Mathematical Sciences, vol. 157. Springer-Verlag, New York (2004)

    Google Scholar 

  29. Kramár, M., Goullet, A., Kondic, L., Mischaikow, K.: Quantifying force networks in particulate systems. Physica D 283, 37–55 (2014)

    Article  MathSciNet  Google Scholar 

  30. Krishan, K., Gameiro, M., Mischaikow, K., Schatz, M., Kurtuldu, H., Madruga, S.: Homology and symmetry breaking in Rayleigh-Benard convection: experiments and simulations. Phys. Fluids 19, 117,105 (2007)

    Article  MATH  Google Scholar 

  31. Maier-Paape, S., Miller, U., Mischaikow, K., Wanner, T.: Rigorous numerics for the Cahn-Hilliard equation on the unit square. Revista Matematica Complutense 21 (2), 351–426 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Maier-Paape, S., Mischaikow, K., Wanner, T.: Structure of the attractor of the Cahn-Hilliard equation on a square. Int. J. Bifurc. Chaos 17 (4), 1221–1263 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maier-Paape, S., Wanner, T.: Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part I: probability and wavelength estimate. Commun. Math. Phys. 195 (2), 435–464 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Maier-Paape, S., Wanner, T.: Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: nonlinear dynamics. Arch. Ration. Mech. Anal. 151 (3), 187–219 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Miller, M.K., Hyde, J.M., Hetherington, M.G., Cerezo, A., Smith, G.D.W., Elliott, C.M.: Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — I. Introduction and methodology. Acta Metallurgica et Materialia 43, 3385–3401 (1995)

    Article  Google Scholar 

  36. Mischaikow, K., Wanner, T.: Probabilistic validation of homology computations for nodal domains. Ann. Appl. Probab. 17 (3), 980–1018 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mischaikow, K., Wanner, T.: Topology-guided sampling of nonhomogeneous random processes. Ann. Appl. Probab. 20 (3), 1068–1097 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mrozek, M., Batko, B.: Coreduction homology algorithm. Discret. Comput. Geom. 41 (1), 96–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput. Math. Appl. 60 (10), 2812–2833 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Menlo Park (1984)

    MATH  Google Scholar 

  41. Nanda, V.: PERSEUS. http://www.sas.upenn.edu/~vnanda/perseus (2015)

  42. Nishiura, Y., Ohnishi, I.: Some mathematical aspects of the micro-phase separation in diblock copolymers. Physica D 84 (1–2), 31–39 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19, 2621–2632 (1986)

    Article  Google Scholar 

  44. Plum, M.: Computer-assisted proofs for semilinear elliptic boundary value problems. Jpn. J. Ind. Appl. Math. 26 (2–3), 419–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. RedHom: Simplicial and cubical homology. http://capd.sourceforge.net/capdRedHom (2015)

  46. Ren, X., Wei, J.: On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5 (2), 193–238 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rohrer, G.S., Miller, H.M.: Topological characteristics of plane sections of polycrystals. Acta Materialia 58 (10), 3805–3814 (2010)

    Article  Google Scholar 

  48. Rump, S.M.: INTLAB – INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). http://www.ti3.tuhh.de/rump/

    Google Scholar 

  49. Sander, E., Wanner, T.: Monte Carlo simulations for spinodal decomposition. J. Stat. Phys. 95 (5–6), 925–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sander, E., Wanner, T.: Unexpectedly linear behavior for the Cahn-Hilliard equation. SIAM J. Appl. Math. 60 (6), 2182–2202 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stephens, T., Wanner, T.: Rigorous validation of isolating blocks for flows and their Conley indices. SIAM J. Appl. Dyn. Syst. 13 (4), 1847–1878 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York/Berlin/Heidelberg (1988)

    Book  MATH  Google Scholar 

  53. Teramoto, T., Nishiura, Y.: Morphological characterization of the diblock copolymer problem with topological computation. Jpn. J. Ind. Appl. Math. 27 (2), 175–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wanner, T.: Maximum norms of random sums and transient pattern formation. Trans. Am. Math. Soc. 356 (6), 2251–2279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wanner, T.: Computer-assisted equilibrium validation for the diblock copolymer model. Discret. Contin. Dyn. Syst. Ser. A (2016, to appear)

    Google Scholar 

  56. Wanner, T., Fuller Jr., E.R., Saylor, D.M.: Homological characterization of microstructure response fields in polycrystals. Acta Materialia 58 (1), 102–110 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the hospitality of the Research Institute for Mathematical Sciences (RIMS) at Kyoto University, where part of this work was done within the international research project Toward a New Fusion Research of Mathematics and Materials Science. The author was partially supported by National Science Foundation grants DMS-0907818, DMS-1114923, and DMS-1407087. The numerical simulations for this work were run on ARGO, a research computing cluster provided by the Office of Research Computing at George Mason University, VA (URL: http://orc.gmu.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Wanner, T. (2016). Topological Analysis of the Diblock Copolymer Equation. In: Nishiura, Y., Kotani, M. (eds) Mathematical Challenges in a New Phase of Materials Science. Springer Proceedings in Mathematics & Statistics, vol 166. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56104-0_2

Download citation

Publish with us

Policies and ethics