Skip to main content

Moisture Distributions and Properties of Pasta Prepared or Cooked Under Different Conditions

  • Chapter
  • First Online:
  • 1533 Accesses

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

A method using an image processing technique was developed to measure the moisture profile in pasta during its rehydration process. The method has the higher spatial resolution and can measure the lower moisture content than currently used methods. A very unique profile was recognized. Possible reasons for the profile will be discussed. The moisture distributions within pastas prepared at different temperatures were measured by the method, and the water sorption kinetics and texture of the pasta were also measured. The pasta prepared at higher temperature exhibited better textural properties. The effects of cooking temperature or salt concentration in cooking water on the kinetics and properties were also examined for the pastas prepared under different temperature-programmed conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acquistucci, R. (2000) Influence of Maillard reaction on protein modification and colour development in pasta. Comparison of different drying conditions. LWT-Food Sci. Technol., 33, 48–52.

    Article  CAS  Google Scholar 

  2. Ahmad, F.B.F.A. (1999) Effect of salts on the gelatinization and rheological properties of sago starch. J. Agric. Food Chem., 47, 3359–3366.

    Article  CAS  Google Scholar 

  3. Aimoto, U., Ogawa, T., and Adachi, S. (2013) Water sorption kinetics of spaghetti prepared under different drying conditions. Food Sci. Technol. Res., 19, 17–22.

    Article  Google Scholar 

  4. Aktan, B. and Khan K. (1992) Effect of high-temperature drying of pasta on quality parameters and on solubility, gel electrophoresis, and reversed-phase high-performance liquid chromatography of protein components. Cereal Chem., 69, 288–295.

    CAS  Google Scholar 

  5. Altan, A., Oztop, M.H., McCarthy, K.L., and McCarthy, M.J. (2011) Monitoring changes in feta cheese during brining by magnetic resonance imaging and NMR relaxometry. J. Food Eng., 107, 200–207.

    Article  Google Scholar 

  6. Anese, M., Nicoli, M.C., Massini, R., and Lerici C.R. (1999) Effects of drying processing on the Maillard reaction in pasta. Food Res. Int., 32, 193–199.

    Article  CAS  Google Scholar 

  7. Baiano, A., Conte, A., and Nobile, M.A.D. (2006) Influence of drying temperature on the spaghetti cooking quality. J. Food Eng., 76, 341–347.

    Article  Google Scholar 

  8. Becker, H.A. (1960) On the absorption of liquid water by the wheat kernel. Cereal Chem., 37, 309–323.

    Google Scholar 

  9. Bilbao-Sáinz, C., Andrés, A., and Fito, P. (2005) Hydration kinetics of dried apple as affected by drying conditions. J. Food Eng., 68, 369–376.

    Article  Google Scholar 

  10. Chhinnan, M.S. (1984) Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Trans. Am. Soc. Agric. Biol. Eng., 27, 610–615.

    Article  Google Scholar 

  11. Chiotelli, E., Pilosio, G., and Meste, M.L. (2002) Effect of sodium chloride on the gelatinization of starch: a multimeasurement study. Biopolymers, 63, 41–58.

    Article  CAS  Google Scholar 

  12. Crank, J. (1975) The mathematics of diffusion. 1st ed., Clarendon Press, Oxford, UK.

    Google Scholar 

  13. Crank, J. and Park, G.S. (1951) Diffusion in high polymers: some anomalies and their significance. Trans. Faraday Soc., 47, 1072–1084.

    Article  CAS  Google Scholar 

  14. Cubadda, R.E., Carcea, M., Marconi, E., and Trivisonno, M.C. (2007) Influence of gluten proteins and drying temperature on the cooking quality of durum wheat pasta. Cereal Chem., 84, 48–55.

    Article  CAS  Google Scholar 

  15. Cunha, L.M., Oliveira, F.A.R., and Oliveira, J.C. (1998) Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. J. Food Eng., 37, 175–191.

    Article  Google Scholar 

  16. Cunin, C. (1995) Investigations on starch and starch-emulsifier interactions in durum wheat pasta. PhD dissertation 11389. Swiss Federal Institute of Technology (ETH), Zurich, CH.

    Google Scholar 

  17. Cunina, C., Handschina, S., Waltherb, P., and Eschera, F. (1995) Structural changes of starch during cooking of durum wheat pasta. LWT-Food Sci. Technol., 28, 323–328.

    Article  Google Scholar 

  18. Cunningham, S.E., McMinn, W.A.M., Magee, T.R.A., and Richardson, P.S. (2007) Modelling water absorption of pasta during soaking. J. Food Eng., 82, 600–607.

    Article  Google Scholar 

  19. Dalbon, G., Grivon, D., and Pagani, M.A. (1996) Continuous manufacturing process. In “Pasta and noodles technology” ed. by Kruger, J.E., Matsu, R.B., and Dick, J.W. Am. Assoc. Cereal Chem., MN, USA.

    Google Scholar 

  20. Dawa, P.R. (2001) Pasta shape design. In “Pasta and semolina technology” ed. by Kill, R.C. and Turnbull, K. Blackwell Science Ltd., Oxford, UK.

    Google Scholar 

  21. De Temmerman, J., Verboven, P., Nicolaı¨, B., and Ramon, H. (2007) Modelling of transient moisture concentration of semolina pasta during air drying. J. Food Eng., 80, 892–903.

    Google Scholar 

  22. Del Nobile, M.A., Buonocore, G.G., Panizza, A., and Gambacorta, G. (2003) Modeling the spaghetti hydration kinetics during cooking and overcooking. J. Food Sci., 68, 1316–1323.

    Article  Google Scholar 

  23. Dexter, J.E., Dronzek, B.L., and Matsuo, R.R. (1978) Scanning electron microscopy of cooked spaghetti. Cereal Chem., 55, 23–30.

    Google Scholar 

  24. Dexter, J.E., Matsuo, R.R., and Morgan, B.C. (1981) High temperature drying: effect on spaghetti properties. J. Food Sci., 46, 1741–1746.

    Article  Google Scholar 

  25. Djomdi, E.R. and Ndjouenkeu, R. (2007) Soaking behaviour and milky extraction performance of tiger nut (Cyperus esculentus) tubers. J. Food Eng., 78, 546–550.

    Article  Google Scholar 

  26. Donnelly, B.J. (1982) Teflon and non-Teflon lined dies: effect on spaghetti quality. J. Food Sci., 47, 1055–1058.

    Article  CAS  Google Scholar 

  27. Feillet, P. and Dexter, J.E. (1996) Quality requirements of durum wheat for semolina milling and pasta production. In “Pasta and noodle technology” ed. by Kruger, J.E., Matsuo, R.R., and Dick. J.W. AACC Int., MN, USA.

    Google Scholar 

  28. Fuwa, H., Komaki, T., Hidukuri, S., and Kainuma, K. (2003) Handbook of starch science (in Japanese; Denpun Kagaku no Jiten). 1st ed., Asakura Shoten, Tokyo, Japan.

    Google Scholar 

  29. García-Pascual, P., Sanjuán, N., Bon, J., Carreres, J.E., and Mulet, A. (2005) Rehydration process of Boletus edulis mushroom: characteristics and modelling. J. Sci. Food Agric., 85, 1397–1404.

    Article  Google Scholar 

  30. García-Pascual, P., Sanjuán, N., Melis, R., and Mulet, A. (2006) Morchella esculenta (morel) rehydration process modelling. J. Food Eng., 72, 346–353.

    Article  Google Scholar 

  31. Güler, S., Köksel, H., and Ng, P.K.W. (2002) Effects of industrial pasta drying temperatures on starch properties and pasta quality. Food Res. Int., 35, 421-427.

    Article  Google Scholar 

  32. Hills, B.P., Babonneau, F., Quantin, V.M., Gaudet, F., and Belton, P.S. (1996) Radial NMR microimaging studies of the rehydration of extruded pasta. J. Food Eng., 27, 71–86.

    Article  Google Scholar 

  33. Hills, B.P., Godward, J., and Wright, K.M. (1997) Fast radial NMR microimaging studies of pasta drying. J. Food Eng., 33, 321–335.

    Article  Google Scholar 

  34. Horigane, A.K., Takahashi, H., Maruyama, S., Ohtsubo, K., and Yoshida, M. (2006) Water penetration into rice grains during soaking observed by gradient echo magnetic resonance imaging. J. Cereal Sci., 44, 307–316.

    Article  CAS  Google Scholar 

  35. Irie, K., Horigane, A.K., Naito, S., Motoi, H., and Yoshida, M. (2004) Moisture distribution and texture of various types of cooked spaghetti. Cereal Chem., 81, 350–355.

    Article  CAS  Google Scholar 

  36. Jay-Lin, J. and Ames, I.A. (1993) Mechanism of starch gelatinization in neutral salt solutions. Starch/Stärke, 45, 161–166.

    Article  Google Scholar 

  37. Lamacchia, C., Di Luccia, A., Baiano, A., Gambacorta, G., la Gatta, B., Pati, S., and La Notte, E. (2007) Changes in pasta proteins induced by drying cycles and their relationship to cooking behaviour. J. Cereal Sci., 46, 58–63.

    Article  CAS  Google Scholar 

  38. Larsson, H. (2002) Effect of pH and sodium chloride on wheat flour dough properties: Ultracentrifugation and rheological measurements. Cereal Chem., 79, 544–545.

    Article  CAS  Google Scholar 

  39. Lee, K.T., Farid, M., and Nguang, S.K. (2006) The mathematical modelling of the rehydration characteristics of fruits. J. Food Eng., 72, 16–23.

    Article  Google Scholar 

  40. Long, R.A. and Richman, D. (1960) Concentration gradients for diffusion of vapors in glassy polymers and their relation to time dependent diffusion phenomena. J. Am. Chem. Soc., 82, 513–519.

    Article  CAS  Google Scholar 

  41. Lucisano, M., Pagani, M.A., Mariotti, M., and Locatelli, D.P. (2008) Influence of die material on pasta characteristics. Food Res. Int., 41, 646–652.

    Article  CAS  Google Scholar 

  42. Marabi, A., Livings, S., Jacobson, M., and Saguy, I.S. (2003) Normalized Weibull distribution for modeling rehydration of food particulates. Eur. Food Res. Technol., 217, 311–318.

    Article  CAS  Google Scholar 

  43. Maskan, M. (2002) Effect of processing on hydration kinetics of three wheat products of the same variety. J. Food Eng., 52, 337–341.

    Article  Google Scholar 

  44. Mercier, S., Des Marchais, L.P., Villeneuve, S., and Foisy, M. (2011) Effect of die material on engineering properties of dried pasta. Proc. Food Sci., 1, 557–562.

    Article  Google Scholar 

  45. Misra, M.K. and Brooker, D.B. (1980) Thin-layer drying and rewetting equations for shelled yellow corn. Trans. Am. Soc. Agric. Biol. Eng., 23, 1254–1260.

    Article  Google Scholar 

  46. Ogawa, T., Kobayashi, T., and Adachi, S. (2011) Water sorption kinetics of spaghetti at different temperatures. Food Bioprod. Process., 89, 135–141.

    Article  Google Scholar 

  47. Ogawa, T. and Adachi, S. (2013) Effect of salts on the water sorption kinetics of dried pasta. Biosci. Biotechnol. Biochem., 77, 249–252.

    Article  CAS  Google Scholar 

  48. Ogawa, T. and Adachi, S. (2014a) Effect of surface roughness on rehydration kinetics of spaghetti. Jpn. J. Food Eng., 15, 101–104.

    Google Scholar 

  49. Ogawa, T. and Adachi, S. (2014b) Measurement of moisture profiles in pasta during rehydration based on image processing. Food Bioprocess Technol., 7, 1465–1471.

    Article  Google Scholar 

  50. Ogawa, T. and Adachi, S. (2014c) Effects of drying conditions on moisture distribution in rehydrated spaghetti. Biosci. Biotechnol. Biochem., 78, 1412–1414.

    Article  CAS  Google Scholar 

  51. Ogawa, T. and Adachi, S. (2016) Moisture distribution and texture of spaghetti rehydrated under different conditions. Biosci. Biotechnol. Biochem., 80, 769–773.

    Article  CAS  Google Scholar 

  52. Ogawa, T., Chuma, A., Aimoto, U., and Adachi, S. (2015) Characterization of spaghetti prepared under different drying conditions. J. Food Sci., 80, E1959–E1964.

    Article  Google Scholar 

  53. Ogawa, T., Hasegawa, A., and Adachi, S. (2014) Effects of relaxation of gluten network on rehydration kinetics of pasta. Biosci. Biotechnol. Biochem., 78, 1930–1934.

    Article  CAS  Google Scholar 

  54. Peleg, M. (1988) An empirical model for the description of moisture sorption curves. J. Food Sci., 53, 1216–1219.

    Article  Google Scholar 

  55. Petitot, M., Brossard, C., Barron, C., Larre, C., Morel, M.H., and Micard, V. (2009) Modification of pasta structure induced by high drying temperatures. Effect on the in vitro digestibility of protein and starch fractions and the potential allergenicity of protein hydrolysates. Food Chem., 116, 401–412.

    Article  CAS  Google Scholar 

  56. Saguy, I.S., Marabi, A., and Wallach, R. (2005) New approach to model rehydration of dry food particulates utilizing principles of liquid transport in porous media. Trends Food Sci. Technol., 16, 495–506.

    Article  Google Scholar 

  57. Sandstedt, R.M., Kempf, W., and Abbott, R.C. (1960) The effect of salts on the gelatinization of wheat starch. Starch/Stärke, 12, 333–337.

    CAS  Google Scholar 

  58. Sanjuán, N., Bon, J., Clemente, G., and Mulet, A. (2004) Changes in the quality of dehydrated broccoli florets during storage. J. Food Eng., 62, 15–21.

    Article  Google Scholar 

  59. Sanjuán, N., Simal, S., Bon, J., and Mulet, A. (1999) Modelling of broccoli stems rehydration process. J. Food Eng., 42, 27–31.

    Article  Google Scholar 

  60. Schofield, J.D., Bottomley, R.C., Timms, M.F., and Booth, M.R. (1983) The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions, J. Cereal Sci., 1, 241–53.

    Article  CAS  Google Scholar 

  61. Sekiyama, Y., Horigane, A.K., Ono, H., Irie, K., Maeda, T., and Yoshida, M. (2012) T2 distribution of boiled dry spaghetti measured by MRI and its internal structure observed by fluorescence microscopy. Food Res. Int., 48, 374–379.

    Article  Google Scholar 

  62. Takagi, M. and Shimoda, H. (ed) (2004) Handbook of image analysis (revised edition). University of Tokyo Press, Tokyo, Japan.

    Google Scholar 

  63. Toi, K., Odani, H., and Nakagawa, T. (1995) High-molecular-weight molecule and water (in Japanese; Koubunsi to Mizu), 1 ed. Kyoritsu Pab., Tokyo, Japan.

    Google Scholar 

  64. Tuhumury, H.C.D., Small, D.M., and Day, L. (2014) The effect of sodium chloride on gluten network formation and rheology. J. Cereal Sci., 60, 229–237.

    Article  CAS  Google Scholar 

  65. Ukai, T., Matsumura, Y., and Urade, R. (2008) Disaggregation and reaggregation of gluten proteins by sodium chloride. J. Agric. Food Chem., 56, 1122–1130.

    Article  CAS  Google Scholar 

  66. Uedaira, H. (1977) What is water? (in Japanese). 1st edn., Kodansha, Tokyo, Japan.

    Google Scholar 

  67. Watanabe, H. (2004) The factor which governs water migration in starchy foods. Jpn. J. Food Eng., 5, 143–151.

    Google Scholar 

  68. Weegels, P.L. and Hamer, R.J. (1998) Temperature-induced changes of wheat products. In “Interactions: The keys to cereal quality” ed. by Hamer, R.J. and Hoseney, R.C. Am. Assoc. Cereal Chem., St. Paul, MN, USA, p95–130.

    Google Scholar 

  69. Wrigley, C., Corke, H., and Walker, C.E. (2004) Encyclopedia of grain science. 1st ed., Oxford: Elsevier.

    Google Scholar 

  70. Yoshino, M., Ogawa, T., and Adachi, S. (2013) Properties and water sorption characteristics of spaghetti prepared using various dies. J. Food Sci., 78, E520–525.

    Article  CAS  Google Scholar 

  71. Yue, P., Rayas-Duarte, P., and Elias, E. (1999) Effect of drying temperature on physicochemical properties of starch isolated from pasta. Cereal Chem., 76, 541–547.

    Article  CAS  Google Scholar 

  72. Zhang, Y. and Cremer, P.S. (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol., 10, 658–663.

    Google Scholar 

  73. Zweifel, C., Handschin, S., Escher, F., and Conde-Petit, B. (2003) Influence of high-temperature drying on structural and textural properties of durum wheat pasta. Cereal Chem., 80, 159–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out during the project study of The Cereal Science Consortium by the Graduate School of Agriculture, Kyoto University and the Nisshin Seifun Group, Inc. This study was also supported by a grant from the Japan Society for the Promotion of Science for a research fellow (T.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Adachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Ogawa, T., Adachi, S. (2017). Moisture Distributions and Properties of Pasta Prepared or Cooked Under Different Conditions. In: Kaneda, I. (eds) Rheology of Biological Soft Matter. Soft and Biological Matter. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56080-7_5

Download citation

Publish with us

Policies and ethics