Skip to main content

Controlling the Mechanism Underlying Chronic Inflammation Through the Epigenetic Modulation of CD4 T Cell Senescence

  • Chapter
  • First Online:
  • 1984 Accesses

Abstract

Senescent cells acquire a senescence-associated secretory phenotype (SASP), which is characterised by the increased production of pro-inflammatory factors.

Senescent CD4 T cells also exhibit the SASP and may contribute to a component of age-associated inflammatory responses called inflammaging. However, the mechanism behind the CD4 T-cell SASP remains unclear. We recently found that a T-cell–specific Menin deficiency results in the premature senescence of T cells after antigenic stimulation, which is accompanied by the SASP. Menin, in part, acts by targeting Bach2, which is known to regulate immune homeostasis. Menin binds to the Bach2 gene locus and controls its expression through the maintenance of active histone modification. Menin-dependent recruitment of PCAF and subsequent histone acetylation appears to be important for the maintenance of Bach2 expression. Menin binding at the Bach2 locus leads to a reduced Bach2 expression in the senescent CD4 T cells. The forced expression of Bach2 in menin-deficient CD4 T cells, as well as in senescent CD4 T cells, normalises the SASP. In addition, Bach2-deficient CD4 T cells exhibit SASP. These findings indicate that the Menin–Bach2 axis therefore plays a critical role in regulating the SASP in CD4 T cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal S, Avni O, Rao A (2000) Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12:643–652

    Article  CAS  PubMed  Google Scholar 

  • Balogh K, Racz K, Patocs A, Hunyady L (2006) Menin and its interacting proteins: elucidation of menin function. Trends Endocrinol Metab 17:357–364

    Article  CAS  PubMed  Google Scholar 

  • Blank V (2008) Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J Mol Biol 376:913–925

    Article  CAS  PubMed  Google Scholar 

  • Cantley MD, Haynes DR (2013) Epigenetic regulation of inflammation: progressing from broad acting histone deacetylase (HDAC) inhibitors to targeting specific HDACs. Inflammopharmacology 21:301–307

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh MM, Weyand CM, Goronzy JJ (2012) Chronic inflammation and aging: DNA damage tips the balance. Curr Opin Immunol 24:488–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS et al (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25:2125–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fearon DT (2007) The expansion and maintenance of antigen-selected CD8(+) T cell clones. Adv Immunol 96:103–139

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    Article  CAS  PubMed  Google Scholar 

  • Gavazzi G, Krause KH (2002) Ageing and infection. Lancet Infect Dis 2:659–666

    Article  PubMed  Google Scholar 

  • Haynes L, Lefebvre JS (2011) Age-related deficiencies in antigen-specific CD4 T cell responses: lessons from mouse models. Aging Dis 2:374–381

    PubMed  PubMed Central  Google Scholar 

  • Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947

    Article  CAS  PubMed  Google Scholar 

  • Jones MJ, Goodman SJ, Kobor MS (2015) DNA methylation and healthy human aging. Aging Cell 14:924–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein K, Gay S (2013) Epigenetic modifications in rheumatoid arthritis, a review. Curr Opin Pharmacol 13:420–425

    Article  CAS  PubMed  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwahara M, Yamashita M, Shinoda K, Tofukuji S, Onodera A, Shinnakasu R, Motohashi S, Hosokawa H, Tumes D, Iwamura C et al (2012) The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-beta and suppresses T(H)2 differentiation. Nat Immunol 13:778–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, Maruyama S, Kometani K, Kurosaki T, Ohara O et al (2014) The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun 5:3555

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindstrom TM, Robinson WH (2010) Rheumatoid arthritis: a role for immunosenescence? J Am Geriatr Soc 58:1565–1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L (2009) T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol 30:301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moro-Garcia MA, Alonso-Arias R, Lopez-Larrea C (2012) Molecular mechanisms involved in the aging of the T-cell immune response. Curr Genomics 13:589–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi H, O'Connor T, Katsuoka F, Engel JD, Yamamoto M (2002) Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294:1–12

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Yamashita M (2009) Critical role of the Polycomb and Trithorax complexes in the maintenance of CD4 T cell memory. Semin Immunol 21:78–83

    Article  CAS  PubMed  Google Scholar 

  • Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 16:6083–6095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pott S, Lieb JD (2015) What are super-enhancers? Nat Genet 47:8–12

    Article  CAS  PubMed  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K (2015) 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell Mol Life Sci 72:3897–914

    Article  CAS  PubMed  Google Scholar 

  • Sykiotis GP, Bohmann D (2010) Stress-activated cap‘n’collar transcription factors in aging and human disease. Sci Signal 3:re3

    Google Scholar 

  • Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, Davis SR, Roychoudhuri R, Restifo NP, Gadina M et al (2015) Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520:558–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gisbergen KP, Klarenbeek PL, Kragten NA, Unger PP, Nieuwenhuis MB, Wensveen FM, ten Brinke A, Tak PP, Eldering E, Nolte MA, van Lier RA (2011) The costimulatory molecule CD27 maintains clonally diverse CD8(+) T cell responses of low antigen affinity to protect against viral variants. Immunity 35:97–108

    Article  PubMed  Google Scholar 

  • Wu T, Hua X (2011) Menin represses tumorigenesis via repressing cell proliferation. Am J Cancer Res 1:726–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita M, Hirahara K, Shinnakasu R, Hosokawa H, Norikane S, Kimura MY, Hasegawa A, Nakayama T (2006) Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 24:611–622

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24:5639–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML (2005) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123:207–218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakatsu Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yamashita, M., Kuwahara, M., Suzuki, J., Yamada, T. (2016). Controlling the Mechanism Underlying Chronic Inflammation Through the Epigenetic Modulation of CD4 T Cell Senescence. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_32

Download citation

Publish with us

Policies and ethics