Skip to main content

Potential Therapeutic Natural Products for the Treatment of Obesity-Associated Chronic Inflammation by Targeting TLRs and Inflammasomes

  • Chapter
  • First Online:
Book cover Chronic Inflammation
  • 1996 Accesses

Abstract

Obesity-associated chronic inflammation is a key event to type 2 diabetes mellitus. Recent advances in deciphering the various immune cells and signalling networks that link the immune system and metabolic system have contributed to our understanding of the pathogenesis of obesity-associated chronic inflammation. Recent studies have suggested that pattern recognition receptors in the innate immune system recognise various kinds of endogenous ligands, and play a crucial role in initiating or promoting obesity-associated chronic inflammation. These findings have also informed new therapeutic strategies based on immunomodulation. Chinese herbal medicines have been used to treat type 2 diabetes mellitus in Asian countries. With the rapid advancement of novel technologies and the increased research on natural products, many new plant-derived extracts and active compounds have been identified to exhibit anti-inflammatory effects. Here we overview natural products that inhibit activation of pattern recognition receptors, particularly Toll-like receptors and inflammasomes, as potential therapeutic agents for the treatment of obesity-associated chronic inflammation. We also discuss molecular mechanisms by which the natural products regulate pattern recognition receptors, with a particular focus on our findings regarding unique compounds of Glycyrrhiza uralensis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderrazak A, Couchie D, Mahmood DF, Elhage R, Vindis C, Laffargue M, Mateo V, Buchele B, Ayala MR, El Gaafary M, Syrovets T, Slimane MN, Friguet B, Fulop T, Simmet T, El Hadri K, Rouis M (2015) Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 131(12):1061–1070. doi:10.1161/CIRCULATIONAHA.114.013730

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Muneer KM, Tamimi IA, Chang ME, Ata MO, Yusuf N (2013) Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol Appl Pharmacol 270(1):70–76. doi:10.1016/j.taap.2013.03.027

    Article  CAS  PubMed  Google Scholar 

  • Baskar AA, Ignacimuthu S, Michael GP, Al Numair KS (2011) Cancer chemopreventive potential of luteolin-7-O-glucoside isolated from Ophiorrhiza mungos Linn. Nutr Cancer 63(1):130–138. doi:10.1080/01635581.2010.516869

    CAS  PubMed  Google Scholar 

  • Benomar Y, Gertler A, De Lacy P, Crepin D, Ould Hamouda H, Riffault L, Taouis M (2013) Central resistin overexposure induces insulin resistance through Toll-like receptor 4. Diabetes 62(1):102–114. doi:10.2337/db12-0237

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481. doi:10.2337/db07-1403

    Article  CAS  PubMed  Google Scholar 

  • Carneiro LA, Travassos LH, Philpott DJ (2004) Innate immune recognition of microbes through Nod1 and Nod2: implications for disease. Microbes Infect 6(6):609–616. doi:10.1016/j.micinf.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  • Carneiro LA, Magalhaes JG, Tattoli I, Philpott DJ, Travassos LH (2008) Nod-like proteins in inflammation and disease. J Pathol 214(2):136–148. doi:10.1002/path.2271

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837. doi:10.1038/nri2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GY, Nunez G (2011) Inflammasomes in intestinal inflammation and cancer. Gastroenterology 141(6):1986–1999. doi:10.1053/j.gastro.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A 84(23):8628–8632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuaz-Perolin C, Billiet L, Bauge E, Copin C, Scott-Algara D, Genze F, Buchele B, Syrovets T, Simmet T, Rouis M (2008) Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE−/− mice. Arterioscler Thromb Vasc Biol 28(2):272–277. doi:10.1161/ATVBAHA.107.155606

    Article  CAS  PubMed  Google Scholar 

  • De Nardo D, Latz E (2011) NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 32(8):373–379. doi:10.1016/j.it.2011.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Elgazar-Carmon V, Rudich A, Hadad N, Levy R (2008) Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res 49(9):1894–1903. doi:10.1194/jlr.M800132-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Fan SH, Wang YY, Lu J, Zheng YL, Wu DM, Li MQ, Hu B, Zhang ZF, Cheng W, Shan Q (2014) Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One 9(2), e89961. doi:10.1371/journal.pone.0089961

    Article  PubMed  PubMed Central  Google Scholar 

  • Fielding BA, Callow J, Owen RM, Samra JS, Matthews DR, Frayn KN (1996) Postprandial lipemia: the origin of an early peak studied by specific dietary fatty acid intake during sequential meals. Am J Clin Nutr 63(1):36–41

    CAS  PubMed  Google Scholar 

  • Fu Y, Gao R, Cao Y, Guo M, Wei Z, Zhou E, Li Y, Yao M, Yang Z, Zhang N (2014) Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 20(1):54–58. doi:10.1016/j.intimp.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  • Gao XJ, Guo MY, Zhang ZC, Wang TC, Cao YG, Zhang NS (2015) Bergenin Plays an Anti-Inflammatory Role via the Modulation of MAPK and NF-kappaB Signaling Pathways in a Mouse Model of LPS-Induced Mastitis. Inflammation 38(3):1142–1150. doi:10.1007/s10753-014-0079-8

    Article  CAS  PubMed  Google Scholar 

  • He X, Wei Z, Zhou E, Chen L, Kou J, Wang J, Yang Z (2015) Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-kappaB and MAPK signaling pathways in LPS-induced mastitis in mice. Int Immunopharmacol 28(1):470–476. doi:10.1016/j.intimp.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  • Honda H, Nagai Y, Matsunaga T, Saitoh S, Akashi-Takamura S, Hayashi H, Fujii I, Miyake K, Muraguchi A, Takatsu K (2012) Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner. J Leukoc Biol 91(6):967–976. doi:10.1189/jlb.0112038

    Article  CAS  PubMed  Google Scholar 

  • Honda H, Nagai Y, Matsunaga T, Okamoto N, Watanabe Y, Tsuneyama K, Hayashi H, Fujii I, Ikutani M, Hirai Y, Muraguchi A, Takatsu K (2014) Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J Leukoc Biol 96(6):1087–1100. doi:10.1189/jlb.3A0114-005RR

    Article  PubMed  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162(7):3749–3752

    CAS  PubMed  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867. doi:10.1038/nature05485

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Kitts DD (2004) Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol Cell Biochem 265(1–2):107–113

    Article  CAS  PubMed  Google Scholar 

  • Kalupahana NS, Moustaid-Moussa N, Claycombe KJ (2012) Immunity as a link between obesity and insulin resistance. Mol Aspects Med 33(1):26–34. doi:10.1016/j.mam.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  • Kamei J, Nakamura R, Ichiki H, Kubo M (2003) Antitussive principles of Glycyrrhizae radix, a main component of the Kampo preparations Bakumondo-to (Mai-men-dong-tang). Eur J Pharmacol 469(1–3):159–163

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21(4):317–337. doi:10.1093/intimm/dxp017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kim MC, Lee BJ, Park DH, Hong SH, Um JY (2010) Anti-Inflammatory activity of chrysophanol through the suppression of NF-kappaB/caspase-1 activation in vitro and in vivo. Molecules 15(9):6436–6451. doi:10.3390/molecules15096436

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB, Lee GS (2014) Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 158(1–2):143–150. doi:10.1016/j.imlet.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sharma A, Madan B, Singhal V, Ghosh B (2007) Isoliquiritigenin inhibits IkappaB kinase activity and ROS generation to block TNF-alpha induced expression of cell adhesion molecules on human endothelial cells. Biochem Pharmacol 73(10):1602–1612. doi:10.1016/j.bcp.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  • Li D, Fu Y, Zhang W, Su G, Liu B, Guo M, Li F, Liang D, Liu Z, Zhang X, Cao Y, Zhang N, Yang Z (2013a) Salidroside attenuates inflammatory responses by suppressing nuclear factor-kappaB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflamm Res 62(1):9–15. doi:10.1007/s00011-012-0545-4

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yin J, Li L, Deng J, Feng C, Zuo Z (2013b) Isoflurane postconditioning reduces ischemia-induced nuclear factor-kappaB activation and interleukin 1beta production to provide neuroprotection in rats and mice. Neurobiol Dis 54:216–224. doi:10.1016/j.nbd.2012.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Q, Wu Q, Jiang J, Duan J, Wang C, Smith MD, Lu H, Wang Q, Nagarkatti P, Fan D (2011) Characterization of sparstolonin B, a Chinese herb-derived compound, as a selective Toll-like receptor antagonist with potent anti-inflammatory properties. J Biol Chem 286(30):26470–26479. doi:10.1074/jbc.M111.227934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Chen P, Buchele B, Dong S, Huang D, Ren C, Zhang Y, Hou X, Simmet T, Shen J (2013) A boswellic acid-containing extract attenuates hepatic granuloma in C57BL/6 mice infected with Schistosoma japonicum. Parasitol Res 112(3):1105–1111. doi:10.1007/s00436-012-3237-7

    Article  PubMed  Google Scholar 

  • Lu JM, Yao Q, Chen C (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 7(3):293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121(6):2111–2117. doi:10.1172/JCI57132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O'Neill LA (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11(10):897–904. doi:10.1038/ni.1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, Akira S (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14(5):454–460. doi:10.1038/ni.2550

    Article  CAS  PubMed  Google Scholar 

  • Misawa T, Saitoh T, Kozaki T, Park S, Takahama M, Akira S (2015) Resveratrol inhibits the acetylated alpha-tubulin-mediated assembly of the NLRP3-inflammasome. Int Immunol 27(9):425–434. doi:10.1093/intimm/dxv018

    Article  CAS  PubMed  Google Scholar 

  • Miyake K, Yamashita Y, Ogata M, Sudo T, Kimoto M (1995) RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol 154(7):3333–3340

    CAS  PubMed  Google Scholar 

  • Morad SA, Schmid M, Buchele B, Siehl HU, El Gafaary M, Lunov O, Syrovets T, Simmet T (2013) A novel semisynthetic inhibitor of the FRB domain of mammalian target of rapamycin blocks proliferation and triggers apoptosis in chemoresistant prostate cancer cells. Mol Pharmacol 83(2):531–541. doi:10.1124/mol.112.081349

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Shimazu R, Ogata H, Akashi S, Sudo K, Yamasaki H, Hayashi S, Iwakura Y, Kimoto M, Miyake K (2002) Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood 99(5):1699–1705

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282(48):35279–35292. doi:10.1074/jbc.M706762200

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15(8):914–920. doi:10.1038/nm.1964

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, Su I, Miyake K, Nagai Y, Akashi S, Mecklenbrauker I, Rajewsky K, Kimoto M, Tarakhovsky A (2000) The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med 192(1):23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18(3):363–374. doi:10.1038/nm.2627

    Article  CAS  PubMed  Google Scholar 

  • Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97. doi:10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park EJ, Pezzuto JM (2015) The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta 1852(6):1071–1113. doi:10.1016/j.bbadis.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Youn HS (2010) Suppression of homodimerization of toll-like receptor 4 by isoliquiritigenin. Phytochemistry 71(14–15):1736–1740. doi:10.1016/j.phytochem.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  • Qi LW, Liu EH, Chu C, Peng YB, Cai HX, Li P (2010) Anti-diabetic agents from natural products–an update from 2004 to 2009. Curr Top Med Chem 10(4):434–457

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Song CS, Liu XH, Shi Y, Gao JF, He XD (1994) Experimental study on compatible application of heat-clearing and detoxifying drugs with blood circulation improving drugs. Zhongguo Zhong Yao Za Zhi 19(10):626–628, 640

    CAS  PubMed  Google Scholar 

  • Ryan KK, Woods SC, Seeley RJ (2012) Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab 15(2):137–149. doi:10.1016/j.cmet.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saberi M, Woods NB, de Luca C, Schenk S, Lu JC, Bandyopadhyay G, Verma IM, Olefsky JM (2009) Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 10(5):419–429. doi:10.1016/j.cmet.2009.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh S, Akashi S, Yamada T, Tanimura N, Kobayashi M, Konno K, Matsumoto F, Fukase K, Kusumoto S, Nagai Y, Kusumoto Y, Kosugi A, Miyake K (2004) Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int Immunol 16(7):961–969. doi:10.1093/intimm/dxh097

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118(9):2992–3002. doi:10.1172/JCI34260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schertzer JD, Tamrakar AK, Magalhaes JG, Pereira S, Bilan PJ, Fullerton MD, Liu Z, Steinberg GR, Giacca A, Philpott DJ, Klip A (2011) NOD1 activators link innate immunity to insulin resistance. Diabetes 60(9):2206–2215. doi:10.2337/db11-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrofelbauer B, Raffetseder J, Hauner M, Wolkerstorfer A, Ernst W, Szolar OH (2009) Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signalling. Biochem J 421(3):473–482. doi:10.1042/BJ20082416

    Article  PubMed  Google Scholar 

  • Senn JJ (2006) Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem 281(37):26865–26875. doi:10.1074/jbc.M513304200

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116(11):3015–3025. doi:10.1172/JCI28898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata S (2000) A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120(10):849–862

    CAS  PubMed  Google Scholar 

  • Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, Neale GA, Hooiveld GJ, Hijmans A, Vroegrijk I, van den Berg S, Romijn J, Rensen PC, Joosten LA, Netea MG, Kanneganti TD (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A 108(37):15324–15329. doi:10.1073/pnas.1100255108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, Kotani H, Yamaoka S, Miyake K, Aoe S, Kamei Y, Ogawa Y (2007) Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 27(1):84–91. doi:10.1161/01.ATV.0000251608.09329.9a

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Koike T (2007) Resveratrol abolishes resistance to axonal degeneration in slow Wallerian degeneration (WldS) mice: activation of SIRT2, an NAD-dependent tubulin deacetylase. Biochem Biophys Res Commun 359(3):665–671. doi:10.1016/j.bbrc.2007.05.164

    Article  CAS  PubMed  Google Scholar 

  • Syrovets T, Gschwend JE, Buchele B, Laumonnier Y, Zugmaier W, Genze F, Simmet T (2005) Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J Biol Chem 280(7):6170–6180. doi:10.1074/jbc.M409477200

    Article  CAS  PubMed  Google Scholar 

  • Tack CJ, Stienstra R, Joosten LA, Netea MG (2012) Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev 249(1):239–252. doi:10.1111/j.1600-065X.2012.01145.x

    Article  CAS  PubMed  Google Scholar 

  • Toyang NJ, Wabo HK, Ateh EN, Davis H, Tane P, Sondengam LB, Bryant J, Verpoorte R (2013) Cytotoxic sesquiterpene lactones from the leaves of Vernonia guineensis Benth. (Asteraceae). J Ethnopharmacol 146(2):552–556. doi:10.1016/j.jep.2013.01.022

    Article  CAS  PubMed  Google Scholar 

  • Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araujo EP, Vassallo J, Curi R, Velloso LA, Saad MJ (2007) Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56(8):1986–1998. doi:10.2337/db06-1595

    Article  CAS  PubMed  Google Scholar 

  • Ungerback J, Belenki D, Jawad Ul-Hassan A, Fredrikson M, Fransen K, Elander N, Verma D, Soderkvist P (2012) Genetic variation and alterations of genes involved in NFkappaB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis 33(11):2126–2134. doi:10.1093/carcin/bgs256

    Article  PubMed  Google Scholar 

  • Watanabe Y, Nakamura T, Ishikawa S, Fujisaka S, Usui I, Tsuneyama K, Ichihara Y, Wada T, Hirata Y, Suganami T, Izaki H, Akira S, Miyake K, Kanayama HO, Shimabukuro M, Sata M, Sasaoka T, Ogawa Y, Tobe K, Takatsu K, Nagai Y (2012) The radioprotective 105/MD-1 complex contributes to diet-induced obesity and adipose tissue inflammation. Diabetes 61(5):1199–1209. doi:10.2337/db11-1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermark P, Wernstedt C, Wilander E, Hayden DW, O'Brien TD, Johnson KH (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A 84(11):3881–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youn HS, Kim YS, Park ZY, Kim SY, Choi NY, Joung SM, Seo JA, Lim KM, Kwak MK, Hwang DH, Lee JY (2010) Sulforaphane suppresses oligomerization of TLR4 in a thiol-dependent manner. J Immunol 184(1):411–419. doi:10.4049/jimmunol.0803988

    Article  CAS  PubMed  Google Scholar 

  • Zeyda M, Stulnig TM (2007) Adipose tissue macrophages. Immunol Lett 112(2):61–67. doi:10.1016/j.imlet.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  • Zhang JQ (2007) Progress of diabetes research in traditional Chinese medicine in recent years. Zhong Xi Yi Jie He Xue Bao 5(4):373–377

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhang X, Liu X, Wang H, Xue J, Yu J, Kang N, Wang X (2014) Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice. Mediators Inflamm 2014:370530. doi:10.1155/2014/370530

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank all members of our laboratories in University of Toyama and Toyama Prefectural Institute for Pharmaceutical Research for their helpful discussions. We also sincerely thank Toyama Prefecture for supporting our laboratory.

This work was supported by grants from Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (JSPS KAKENHI Grant Numbers 25870257 to Y.W., 24590577 to Y.N., 15K07960 to H.H. and 24390119 to K.T.), JST, PRESTO (Y.N.), Hokuriku Innovation Cluster for Health Science, MEXT Regional Innovation Cluster Program, Toyama/Ishikawa Region (K.T.), Hokuriku Life Science Cluster, MEXT Regional Innovation Strategy Support Program (K.T.), and First Bank of Toyama Scholarship Foundation (Y.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshinori Nagai or Kiyoshi Takatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nagai, Y., Honda, H., Watanabe, Y., Takatsu, K. (2016). Potential Therapeutic Natural Products for the Treatment of Obesity-Associated Chronic Inflammation by Targeting TLRs and Inflammasomes. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_30

Download citation

Publish with us

Policies and ethics