Skip to main content

Mechanisms of Lysosomal Exocytosis by Immune Cells

  • Chapter
  • First Online:
Chronic Inflammation

Abstract

Lysosomal exocytosis is an essential process to regulate various immune responses. Many cells of immune systems have cell-specific secretory lysosomes, which are secreted in response to external stimuli, including neutrophil azurophil granules, platelet dense granules, eosinophil granules, basophil and mast cell histamine granules, and cytotoxic T lymphocyte (CTL) lytic granules. On the other hand, phagocytes such as macrophages, neutrophils, and dendritic cells contain many conventional lysosomes, which fuse with phagosomes to degrade the engulfed particles, and then the waste materials are expelled by lysosomal exocytosis. A failure of this process can lead to accumulation of waste materials, which in turn may aberrantly activate the phagocytes. Recent studies have identified various proteins that regulate the lysosomal exocytosis, and their dysfunctions were shown to cause several genetic immune disorders. This chapter highlights the current understandings of the molecular mechanisms of lysosomal exocytosis by immune cells and their relevance to the development of chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker SM, Delamarre L, Mellman I, Andrews NW (2009) Differential role of the Ca(2+) sensor synaptotagmin VII in macrophages and dendritic cells. Immunobiology 214:495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131

    Article  CAS  PubMed  Google Scholar 

  • Brose N (2008) For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 9:1403–1413

    Article  CAS  PubMed  Google Scholar 

  • Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Shen D, Samie M, Xu H (2010) Mucolipins: intracellular TRPML1-3 channels. FEBS Lett 584:2013–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czibener C, Sherer NM, Becker SM, Pypaert M, Hui E, Chapman ER, Mothes W, Andrews NW (2006) Ca2+ and synaptotagmin VII-dependent delivery of lysosomal membrane to nascent phagosomes. J Cell Biol 174:997–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis DB, Delmonte AJ, Ly CT, Mcnally EM (2000) Myoferlin, a candidate gene and potential modifier of muscular dystrophy. Hum Mol Genet 9:217–226

    Article  CAS  PubMed  Google Scholar 

  • Doherty KR, Cave A, Davis DB, Delmonte AJ, Posey A, Earley JU, Hadhazy M, Mcnally EM (2005) Normal myoblast fusion requires myoferlin. Development 132:5565–5575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elstak ED, Neeft M, Nehme NT, Voortman J, Cheung M, Goodarzifard M, Gerritsen HC, Van Bergen en Henegouwen PM, Callebaut I, De Saint Basile G, van der Sluijs P (2011) The munc13-4-rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane. Blood 118:1570–1578

    Article  CAS  PubMed  Google Scholar 

  • Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33:397–405

    Article  CAS  PubMed  Google Scholar 

  • Han R, Campbell KP (2007) Dysferlin and muscle membrane repair. Curr Opin Cell Biol 19:409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y, Yoshioka Y, Yoshikawa H, Nagata S (2006) Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443:998–1002

    Article  CAS  PubMed  Google Scholar 

  • le Borgne R, Hoflack B (1997) Mannose 6-phosphate receptors regulate the formation of clathrin-coated vesicles in the TGN. J Cell Biol 137:335–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Leibiger IB, Leibiger B, Berggren PO (2008) Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr 28:233–251

    Article  CAS  PubMed  Google Scholar 

  • Lorentz A, Baumann A, Vitte J, Blank U (2012) The SNARE machinery in mast cell secretion. Front Immunol 3:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  CAS  PubMed  Google Scholar 

  • Marshansky V, Futai M (2008) The V-type H + −ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 20:415–426

    Article  CAS  PubMed  Google Scholar 

  • Martens S (2010) Role of C2 domain proteins during synaptic vesicle exocytosis. Biochem Soc Trans 38:213–216

    Article  CAS  PubMed  Google Scholar 

  • Martens S, Mcmahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    Article  CAS  PubMed  Google Scholar 

  • Martens S, Mcmahon HT (2011) C2 domains and membrane fusion. Curr Top Membr 68:141–159

    Article  CAS  PubMed  Google Scholar 

  • Martinez I, Chakrabarti S, Hellevik T, Morehead J, Fowler K, Andrews NW (2000) Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts. J Cell Biol 148:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21:421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S (2005) Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med 202:1333–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posey AD Jr, Demonbreun A, Mcnally EM (2011) Ferlin proteins in myoblast fusion and muscle growth. Curr Top Dev Biol 96:203–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalho-Santos J, Moreno RD, Wessel GM, chan EK, Schatten G (2001) Membrane trafficking machinery components associated with the mammalian acrosome during spermiogenesis. Exp Cell Res 267:45–60

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Mejorada G, Rosales C (1998) Signal transduction by immunoglobulin Fc receptors. J Leukoc Biol 63:521–533

    CAS  PubMed  Google Scholar 

  • Seabra MC, Wasmeier C (2004) Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol 16:451–457

    Article  CAS  PubMed  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  CAS  PubMed  Google Scholar 

  • stinchcombe J, Bossi G, Griffiths GM (2004) Linking albinism and immunity: the secrets of secretory lysosomes. Science 305:55–59

    Article  CAS  PubMed  Google Scholar 

  • Stone KD, Prussin C, Metcalfe DD (2010) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125:S73–S80

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson J (2006) CFTR: helping to acidify macrophage lysosomes. Nat Cell Biol 8:908–909

    Article  CAS  PubMed  Google Scholar 

  • Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    Article  CAS  PubMed  Google Scholar 

  • van Dommelen SL, Sumaria N, Schreiber RD, Scalzo AA, Smyth MJ, Degli-Esposti MA (2006) Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity 25:835–848

    Article  PubMed  Google Scholar 

  • Vyas JM, van der Veen AG, PLOEGH HL (2008) The known unknowns of antigen processing and presentation. Nat Rev Immunol 8:607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LG, Hamid E, Shin W, Chiang HC (2014) Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 76:301–331

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Toops KA, Diaz F, Carvajal-Gonzalez JM, Gravotta D, Mazzoni F, Schreiner R, Rodriguez-Boulan E, Lakkaraju A (2012) Mechanism of polarized lysosome exocytosis in epithelial cells. J Cell Sci 125:5937–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rikinari Hanayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Song, Jh., Hanayama, R. (2016). Mechanisms of Lysosomal Exocytosis by Immune Cells. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_29

Download citation

Publish with us

Policies and ethics