Skip to main content

Oxidative Stress Regulation by Reactive Cysteine Persulfides in Inflammation

  • Chapter
  • First Online:
Chronic Inflammation
  • 1994 Accesses

Abstract

Reactive oxygen species (ROS) such as superoxide anion radical and hydrogen peroxide are ubiquitously generated during metabolisms of aerobic organisms. Excess production of ROS due to imbalance between formation and removal of ROS by the antioxidant system causes oxidative stress-related tissue damage. Therefore reinforcement of antioxidant capacity has been considered as a beneficial approach for treatment and prevention of chronic inflammatory disorders where ROS production is persistently activated. Cysteine persulfide was recently identified regarding its endogenous formation in mammalian cells. Biochemical analyses revealed that cysteine persulfide and its derivatives such as glutathione persulfide act as a strong antioxidant in cells. Better understanding of the antioxidant actions of cysteine persulfides in chronic inflammation-associated diseases is a necessary basis to develop new strategies for disease treatment and prevention by modulating the process of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed KA, Sawa T, Ihara H et al (2012) Regulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP: potential implications for ROS signalling. Biochem J 441:719–730

    Article  CAS  PubMed  Google Scholar 

  • Akaike T, Okamoto S, Sawa T et al (2003) 8-Nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Natl Acad Sci U S A 100:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JO, Pearson RG (1962) The factors determining nucleophilic reactivities. J Am Chem Soc 84:16–24

    Article  CAS  Google Scholar 

  • Fujii S, Sawa T, Ihara H et al (2010) The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response. J Biol Chem 285:23970–23984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  • Holland R, Hawkins AE, Eggler AL et al (2008) Prospective type 1 and type 2 disulfides of Keap1 protein. Chem Res Toxicol 21:2051–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda K, Yamada N, Yoshida R et al (2015) 8-Mercapto-cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. Plant Cell Physiol 56:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Ida T, Sawa T, Ihara H et al (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111:7606–7611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurk D, Wilson C, Passos JF et al (2013) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172

    Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LC et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Miranda KM, Wink DA (2014) Persulfides and the cellular thiol landscape. Proc Natl Acad Sci U S A 111:7505–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niki E (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 49:503–515

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Sawa T, Kitajima N et al (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 8:714–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono K, Akaike T, Sawa T et al (2014) Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med 77:82–94

    Article  CAS  PubMed  Google Scholar 

  • Passos JF, Nelson G, Wang C et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahaman MM, Sawa T, Ahtesham AK et al (2014) S-Guanylation proteomics for redox-based mitochondrial signaling. Antioxid Redox Signal 20:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa T, Tatemichi M, Akaike T et al (2006) Analysis of urinary 8-nitroguanine, a marker of nitrative nucleic acid damage, by high-performance liquid chromatography-electrochemical detection coupled with immunoaffinity purification: association with cigarette smoking. Free Radic Biol Med 40:711–720

    Article  CAS  PubMed  Google Scholar 

  • Sawa T, Zaki MH, Okamoto T et al (2007) Protein S-guanylation by the biological signal 8-nitroguanosine 3′,5′-cyclic monophosphate. Nat Chem Biol 3:727–735

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci 1147:37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  CAS  PubMed  Google Scholar 

  • Terasaki Y, Akuta T, Terasaki M et al (2006) Guanine nitration in idiopathic pulmonary fibrosis and its implication for carcinogenesis. Am J Respir Crit Care Med 174:665–673

    Article  CAS  PubMed  Google Scholar 

  • Uruno A, Motohashi H (2011) The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide 25:153–160

    Article  CAS  PubMed  Google Scholar 

  • Wu LL, Chiou CC, Chang PY et al (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zaki MH, Fujii S, Okamoto T et al (2009) Cytoprotective function of heme oxygenase 1 induced by a nitrated cyclic nucleotide formed during murine salmonellosis. J Immunol 182:3746–3756

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Sawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Sawa, T. (2016). Oxidative Stress Regulation by Reactive Cysteine Persulfides in Inflammation. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_24

Download citation

Publish with us

Policies and ethics