Skip to main content

The Drosophila Toll Pathway: A Model of Innate Immune Signalling Activated by Endogenous Ligands

  • Chapter
  • First Online:
Chronic Inflammation

Abstract

The Drosophila Toll signalling pathway is partially homologous to the mammalian TLR innate immune pathway, but also has marked differences. The Drosophila Toll pathway is mainly activated by the endogenous ligand Spätzle, instead of by direct recognition of microbial molecules; and downstream signalling from adaptor molecules/kinases, MyD88/IRAKs, to the inhibitor of NF-κB (IκB) is a blackbox in Drosophila. These differences provide an interesting opportunity to decipher molecular mechanisms underlying microbial-independent activation of innate immunity. In our laboratory, we have performed ex vivo genome-wide RNAi screening and identified a HECT-type E3 ligase, Sherpa, as an essential component of intracellular Toll signalling; two protein kinases, Pitslre and Doa, as downstream kinases in the blackbox; and a Jumonji-like histone demethylase, Jarid2, as a transcription factor. Additionally, we found that the Drosophila larval peptide fraction has strong stimulatory activity on the Toll receptor. These findings and future analyses are likely to provide information on the as yet unclear molecular mechanisms of ‘sterile inflammation’ in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson KV, Jürgens G, Nüsslein-Volhard C (1985a) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Article  CAS  PubMed  Google Scholar 

  • Anderson KV, Bokla L, Nüsslein-Volhard C (1985b) Establishment of dorsal-ventral polarity in the drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791–798

    Article  CAS  PubMed  Google Scholar 

  • Belvin MP, Jin Y, Anderson KV (1995) Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev 9:783–793

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Poidevin M, Kwon HM, Guillou A, Sottas V, Lee BL, Lemaitre B (2009) A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proc Natl Acad Sci U S A 106:12442–12447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buss H, Handschick K, Jurrmann N, Pekkonen P, Beuerlein K, Müller H, Wait R, Saklatvala J, Ojala PM, Schmitz ML, Naumann M, Kracht M (2012) Cyclin-dependent kinase 6 phosphorylates NF-kB P65 at serine 536 and contributes to the regulation of inflammatory gene expression. PLoS One 7:e51847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G-Y, Tang J, Zheng P, Liu Y (2009) CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323:1722–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Chamy L, Leclerc V, Caldelari I, Reichhart JM (2008) Sensing of ‘danger signals’ and pathogen-associated molecular patterns defines binary signaling pathways ‘upstream’ of Toll. Nat Immunol 9:1165–1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874

    Article  CAS  PubMed  Google Scholar 

  • Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385

    Article  CAS  PubMed  Google Scholar 

  • Gobert V, Gottar M, Matskevich AA, Rutschman S, Royet J, Belvin M, Hoffmann JA (2003) Dominique Ferrandon, Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302:2126–2130

    Article  CAS  PubMed  Google Scholar 

  • Goto A, Yano T, Terashima J, Iwashita S, Oshima Y, Kurata S (2010) Cooperative regulation of the induction of the novel antibacterial Listericin by peptidoglycan recognition protein LE and the JAK-STAT pathway. J Biol Chem 285:15731–15738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauling T, Krautz R, Markus R, Volkenhoff A, Kucerova L, Theopold U (2014) A Drosophila immune response against Ras-induced overgrowth. Biol Open 3:250–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igaki T, Yamamoto-Goto Y, Tokushige N, Kanda H, Miura M (2002) Down-regulation of DIAP1 triggers a novel Drosophila cell death pathway mediated by Dark and DRONC. J Biol Chem 277:23103–23106

    Article  CAS  PubMed  Google Scholar 

  • Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, Gonzalez-Crespo S, Tatei K, Levine M (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75:753–763

    Article  CAS  PubMed  Google Scholar 

  • Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M, Kambris Z, Brun S, Hashimoto C, Ashida M, Brey PT, Lee WJ (2006) A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10:45–55

    Article  CAS  PubMed  Google Scholar 

  • Kanoh H, Tong L-L, Kuraishi T, Suda Y, Momiuchi Y, Shishido F, Kurata S (2015a) Genome-wide RNAi screening implicates the E3 ubiquitin ligase Sherpa in mediating innate immune signaling by Toll in Drosophila adults. Sci Signal 8:ra107

    Google Scholar 

  • Kanoh H, Kuraishi T, Tong LL, Watanabe R, Nagata S, Kurata S (2015b) Ex vivo genome-wide RNAi screening of the Drosophila Toll signaling pathway elicited by a larva-derived tissue extract. Biochem Biophys Res Commun 467:400–406

    Google Scholar 

  • Kleino A, Silverman N (2014) The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol 42:25–35

    Article  CAS  PubMed  Google Scholar 

  • Kruidenier L, Chung C, Cheng Z, Liddle J, Che K, Joberty G, Bantscheff M, Bountra C, Bridges A, Diallo H, Eberhard D, Hutchinson S, Jones E, Katso R, Leveridge M, Mander PK, Mosley J, Ramirez-Molina C, Rowland P, Schofield CJ, Sheppard RJ, Smith JE, Swales C, Tanner R, Thomas P, Tumber A, Drewes G, Oppermann U, Patel DJ, Lee K, Wilson DM (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488:404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurata S (2014) Peptidoglycan recognition proteins in Drosophila immunity. Dev Comp Immunol 42:36–41

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  CAS  PubMed  Google Scholar 

  • Manfruelli P, Reichhart JM, Steward R, Hoffmann JA, Lemaitre B (1999) A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J 18:3380–3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marek LR, Kagan JC (2012) Phosphoinositide binding by the Toll adaptor dMyD88 controls antibacterial responses in Drosophila. Immunity 36:612–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIlroy G, Istvan F, Aurikko J, Wentzell JS, Lim MA, Fenton JC, Gay NJ, Hidalgo A (2013) Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS. Nat Neurosci 16:1248–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel T, Reichhart JM, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756–759

    Article  CAS  PubMed  Google Scholar 

  • Ming M, Obata F, Kuranaga E, Miura M (2014) Persephone/Spätzle Pathogen Sensors Mediate the Activation of Toll Receptor Signaling in Response to Endogenous Danger Signals in Apoptosis-deficient Drosophila. J Biol Chem 289:7558–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamoto M, Moy RH, Xu J, Bambina S, Yasunaga A, Shelly SS, Gold B, Cherry S (2012) Virus recognition by Toll-7 activates antiviral autophagy in Drosophila. Immunity 36:658–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang X, Yang W-L, Wu R, Zhou M, Jacob A, Dong W, Kuncewitch M, Ji Y, Yang H, Wang H, Fujita J, Nicastro J, Coppa GF, Tracey KJ, Wang P (2013) Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med 19:1489–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reach M, Galindo RL, Towb P, Allen JL, Karin M, Wasserman SA (1996) A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev Biol 180:353–364

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarisation and host responses against helminth infection. Nat Immunol 11:936–944

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Bristow BN, Qu G, Wasserman SA (2002) A heterotrimeric death domain complex in Toll signaling. Proc Natl Acad Sci U S A 99:12871–12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Towb P, Chiem DN, Foster BA, Wasserman SA (2004) Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 23:100–110

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe B, Forero MG, Zhu B, Robinson IM, Hidalgo A (2013) Neuron-Type Specific Functions of DNT1, DNT2 and Spz at the Drosophila Neuromuscular Junction. PLoS One 8:e75902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 14:805–820

    Article  Google Scholar 

  • Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol 3:91–97

    Article  CAS  PubMed  Google Scholar 

  • Towb P, Galindo RL, Wasserman SA (1998) Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 125:2443–2450

    CAS  PubMed  Google Scholar 

  • Valanne S, Wang JH, Ramet M (2011) The Drosophila Toll signaling pathway. J Immunol 186:649–656

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Nakamura T, Ishikawa S, Fujisaka S, Usui I, Tsuneyama K, Ichihara Y, Wada T, Hirata Y, Suganami T, Izaki H, Akira S, Miyake K, Kanayama H, Shimabukuro M, Sata M, Sasaoka T, Ogawa Y, Tobe K, Takatsu K, Nagai Y (2012) The radioprotective 105/MD-1 complex contributes to diet-induced obesity and adipose tissue inflammation. Diabetes 61:1199–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4:794–800

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the CREST/PRESTO Chronic Inflammation research group for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takayuki Kuraishi or Hirotaka Kanoh .

Editor information

Editors and Affiliations

Additional information

Funding

This work was supported by grants from the Japan Science and Technology Agency (JST).

Author contributions

T. K., H. K, Y. M., and H. K. contributed equally to this work. T. K., H. K, Y. M., and H. K. wrote the draft. H. K. drew the figures. T. K. managed the writing. T. K., H. K, Y. M., H. K., and S. K. completed the manuscript.

Competing Interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kuraishi, T., Kanoh, H., Momiuchi, Y., Kenmoku, H., Kurata, S. (2016). The Drosophila Toll Pathway: A Model of Innate Immune Signalling Activated by Endogenous Ligands. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_10

Download citation

Publish with us

Policies and ethics