Bile Acids and Viral Hepatitis and Hepatocellular Carcinoma

Chapter

Abstract

Serum total bile acid levels are increased in viral hepatitis and correlate with the degree of liver fibrosis and are also high in hepatocellular carcinoma (HCC). In this chapter, we describe how accumulation of bile acids affects hepatitis viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) and carcinogenesis of HCC. Viral hepatitis: Na+/taurocholate cotransporting polypeptide (NTCP) is an uptake transporter of bile acids and an HBV entry receptor. Several NTCP inhibitors reduce HBV infection. Bile acids promote HBV replication via nuclear receptor transduction. HBV infection increases bile acid synthesis. In patients with high bile acids, interferon therapy shows higher failure rates in chronic hepatitis C. Bile acids increase HCV replication. HCC: Bile acids can induce cell death and inflammation, leading to promotion of carcinogenesis. Bile acid uptake transporters (NTCP and organic anion transporter peptide [OATP]1B3) and bile salt export pump expression are reduced in most cases of HCC. Because OATP1B3 also uptakes gadolinium–ethoxybenzyl–diethylenetriamine pentaacetic acid (Gd–EOB–DTPA), HCC lesions show low signal intensity in the hepatobiliary phase of Gd–EOB–DTPA-enhanced magnetic resonance imaging. Ursodeoxycholic acid (UDCA): UDCA is a hydrophilic bile acid and a safe and effective medical therapy in chronic hepatitis B and C. UDCA improves abnormal liver transaminase levels; however, it cannot eradicate viruses in the liver. UDCA-induced inhibition of DLC1 (deleted in liver cancer 1) protein degradation leads to suppression of HCC cell growth. DLC1 is a tumor suppressor gene for HCC.

Keywords

Bile acids Hepatitis B virus Hepatitis C virus Hepatocellular carcinoma Hepatobiliary transporter 

References

  1. 1.
    Shlomai A, Halfon P, Goldiner I, Zelber-Sagi S, Halpern Z, Oren R, et al. Serum bile acid levels as a predictor for the severity of liver fibrosis in patients with chronic hepatitis C. J Viral Hepat. 2013;20(2):95–102. doi: 10.1111/j.1365-2893.2012.01628.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol Cell Proteomics. 2011;10(7):M110 004945. doi: 10.1074/mcp.M110.004945.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58(5):949–55. doi: 10.1016/j.jhep.2013.01.003.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vlahcevic ZR, Buhac I, Bell Jr CC, Swell L. Abnormal metabolism of secondary bile acids in patients with cirrhosis. Gut. 1970;11(5):420–2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang X, Xie G, Zhao A, Zheng X, Huang F, Wang Y, et al. Serum bile acids are associated with pathological progression of hepatitis B-induced cirrhosis. J Proteome Res. 2015; doi: 10.1021/acs.jproteome.5b00217.Google Scholar
  6. 6.
    Yin P, Wan D, Zhao C, Chen J, Zhao X, Wang W, et al. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol BioSyst. 2009;5(8):868–76. doi: 10.1039/b820224a.CrossRefPubMedGoogle Scholar
  7. 7.
    Murakami E, Wang T, Park Y, Hao J, Lepist EI, Babusis D, et al. Implications of efficient hepatic delivery by tenofovir alafenamide (GS-7340) for hepatitis B virus therapy. Antimicrob Agents Chemother. 2015;59(6):3563–9. doi: 10.1128/AAC.00128-15.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64(12):1972–84. doi: 10.1136/gutjnl-2015-309809.CrossRefPubMedGoogle Scholar
  9. 9.
    Xiao F, McKeating JA, Baumert TF. A bile acid transporter as a candidate receptor for hepatitis B and D virus entry. J Hepatol. 2013;58(6):1246–8. doi: 10.1016/j.jhep.2013.01.036.CrossRefPubMedGoogle Scholar
  10. 10.
    Yan H, Zhong GC, Xu GW, He WH, Jing ZY, Gao ZC et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife. 2012;1. doi:ARTN e000497554/eLife.00049.Google Scholar
  11. 11.
    Watashi K, Urban S, Li W, Wakita T. NTCP and beyond: opening the door to unveil hepatitis B virus entry. Int J Mol Sci. 2014;15(2):2892–905. doi: 10.3390/ijms15022892.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Reese VC, Oropeza CE, McLachlan A. Independent activation of hepatitis B virus biosynthesis by retinoids, peroxisome proliferators, and bile acids. J Virol. 2013;87(2):991–7. doi: 10.1128/JVI.01562-12.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ramiere C, Scholtes C, Diaz O, Icard V, Perrin-Cocon L, Trabaud MA, et al. Transactivation of the hepatitis B virus core promoter by the nuclear receptor FXRalpha. J Virol. 2008;82(21):10832–40. doi: 10.1128/JVI.00883-08.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Makishima M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci. 2005;97(2):177–83.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim HY, Cho HK, Choi YH, Lee KS, Cheong J. Bile acids increase hepatitis B virus gene expression and inhibit interferon-alpha activity. FEBS J. 2010;277(13):2791–802. doi: 10.1111/j.1742-4658.2010.07695.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Reese VC, Moore DD, McLachlan A. Limited effects of bile acids and small heterodimer partner on hepatitis B virus biosynthesis in vivo. J Virol. 2012;86(5):2760–8. doi: 10.1128/JVI.06742-11.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L, Giersch K, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology. 2014;60(5):1483–93. doi: 10.1002/hep.27159.CrossRefPubMedGoogle Scholar
  18. 18.
    Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013;57(4):1333–42. doi: 10.1002/hep.26141.CrossRefPubMedGoogle Scholar
  19. 19.
    Kabiri M, Jazwinski AB, Roberts MS, Schaefer AJ, Chhatwal J. The changing burden of hepatitis C virus infection in the United States: model-based predictions. Ann Intern Med. 2014;161(3):170–80. doi: 10.7326/M14-0095.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Graf D, Haselow K, Munks I, Bode JG, Haussinger D. Inhibition of interferon-alpha-induced signaling by hyperosmolarity and hydrophobic bile acids. Biol Chem. 2010;391(10):1175–87. doi: 10.1515/BC.2010.108.CrossRefPubMedGoogle Scholar
  21. 21.
    Chang KO, George DW. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J Virol. 2007;81(18):9633–40. doi: 10.1128/JVI.00795-07.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schupp A-K, Graf D. Bile acid-induced modulation of virus replication. Eur J Med Res. 2014;19(Suppl 1):S27. doi: 10.1186/2047-783x-19-s1-s27.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Chhatwal P, Bankwitz D, Gentzsch J, Frentzen A, Schult P, Lohmann V, et al. Bile acids specifically increase hepatitis C virus RNA-replication. PLoS One. 2012;7(4):e36029. doi: 10.1371/journal.pone.0036029.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen W, Liu J, Gluud C. Bile acids for viral hepatitis. Cochrane Database Syst Rev. 2007;4:CD003181. doi: 10.1002/14651858.CD003181.pub2.Google Scholar
  25. 25.
    Carreno V. Review article: management of chronic hepatitis C in patients with contraindications to anti-viral therapy. Aliment Pharmacol Ther. 2014;39(2):148–62. doi: 10.1111/apt.12562.CrossRefPubMedGoogle Scholar
  26. 26.
    Koga Y. Anti-cholestatic and cytoprotective properties of ursodeoxycholic acid Studies in vivo and vitro. Kanzo. 1987;28(12):1597–604. doi: 10.2957/kanzo.28.1597.CrossRefGoogle Scholar
  27. 27.
    Sola S, Amaral JD, Aranha MM, Steer CJ, Rodrigues CM. Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors. Curr Med Chem. 2006;13(25):3039–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55. doi: 10.1016/S0140-6736(11)61347-0.CrossRefPubMedGoogle Scholar
  29. 29.
    Bruix J, Sherman M. American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2. doi: 10.1002/hep.24199.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang W, Zhou L, Yin P, Wang J, Lu X, Wang X, et al. A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma. Sci Rep. 2015;5:8984. doi: 10.1038/srep08984.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nakayama F, Yanagisawa J, Miyazaki H, Itoh M. Bile-acid composition in primary hepatocellular-carcinoma. J Gastroenterol Hepatol. 1987;2(2):149–58. doi: 10.1111/j.1440-1746.1987.tb01613.x.CrossRefGoogle Scholar
  32. 32.
    Liao M, Zhao J, Wang T, Duan J, Zhang Y, Deng X. Role of bile salt in regulating Mcl-1 phosphorylation and chemoresistance in hepatocellular carcinoma cells. Mol Cancer. 2011;10:44. doi: 10.1186/1476-4598-10-44.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    El-Mir MY, Badia MD, Luengo N, Monte MJ, Marin JJ. Increased levels of typically fetal bile acid species in patients with hepatocellular carcinoma. Clin Sci (Lond). 2001;100(5):499–508.CrossRefGoogle Scholar
  34. 34.
    Scheimann AO, Strautnieks SS, Knisely AS, Byrne JA, Thompson RJ, Finegold MJ. Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma. J Pediatr. 2007;150(5):556–9. doi: 10.1016/j.jpeds.2007.02.030.CrossRefPubMedGoogle Scholar
  35. 35.
    Takeyama Y, Sakisaka S. Hepatobiliary membrane transporters in primary biliary cirrhosis. Hepatol Res. 2012;42(2):120–30. doi: 10.1111/j.1872-034X.2011.00912.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen Y, Song X, Valanejad L, Vasilenko A, More V, Qiu X, et al. Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology. 2013;57(4):1530–41. doi: 10.1002/hep.26187.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zollner G, Wagner M, Fickert P, Silbert D, Fuchsbichler A, Zatloukal K, et al. Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int. 2005;25(2):367–79. doi: 10.1111/j.1478-3231.2005.01033.x.CrossRefPubMedGoogle Scholar
  38. 38.
    Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N, Olam D, Jacob-Hirsch J, et al. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res. 2007;5(11):1159–70. doi: 10.1158/1541-7786.MCR-07-0172.CrossRefPubMedGoogle Scholar
  39. 39.
    Ueno Y, Moriyama M, Uchida T, Arakawa Y. Irregular regeneration of hepatocytes is an important factor in the hepatocarcinogenesis of liver disease. Hepatology. 2001;33(2):357–62. doi: 10.1053/jhep.2001.21902.CrossRefPubMedGoogle Scholar
  40. 40.
    Stanimirov B, Stankov K, Mikov M. Bile acid signaling through farnesoid X and TGR5 receptors in hepatobiliary and intestinal diseases. Hepatobiliary Pancreat Dis Int. 2015;14(1):18–33. doi: 10.1016/S1499-3872(14)60307-6.CrossRefPubMedGoogle Scholar
  41. 41.
    Han LY, Fan YC, Mu NN, Gao S, Li F, Ji XF, et al. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B virus associated hepatocellular carcinoma. Int J Med Sci. 2014;11(2):164–71. doi: 10.7150/ijms.6745.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schneller D, Machat G, Sousek A, Proell V, van Zijl F, Zulehner G, et al. p19(ARF)/p14(ARF) controls oncogenic functions of signal transducer and activator of transcription 3 in hepatocellular carcinoma. Hepatology. 2011;54(1):164–72. doi: 10.1002/hep.24329.CrossRefPubMedGoogle Scholar
  43. 43.
    Calvisi DF. Dr. Jekyll and Mr. Hyde: a paradoxical oncogenic and tumor suppressive role of signal transducer and activator of transcription 3 in liver cancer. Hepatology. 2011;54(1):9–12. doi: 10.1002/hep.24435.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhou M, Wang X, Phung V, Lindhout DA, Mondal K, Hsu JY, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74(12):3306–16. doi: 10.1158/0008-5472.CAN-14-0208.CrossRefPubMedGoogle Scholar
  45. 45.
    Narita M, Hatano E, Arizono S, Miyagawa-Hayashino A, Isoda H, Kitamura K, et al. Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol. 2009;44(7):793–8. doi: 10.1007/s00535-009-0056-4.CrossRefPubMedGoogle Scholar
  46. 46.
    Takeyama Y, Tsuchiya N, Kunimoto H, Fukunaga A, Sakurai K, Hirano G, et al. Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging as a useful detection method for advanced primary biliary cirrhosis. Hepatol Res. 2015;45(10):E108–14. doi: 10.1111/hepr.12470.CrossRefPubMedGoogle Scholar
  47. 47.
    Payne CM, Weber C, Crowley-Skillicorn C, Dvorak K, Bernstein H, Bernstein C, et al. Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis. 2007;28(1):215–22. doi: 10.1093/carcin/bgl139.CrossRefPubMedGoogle Scholar
  48. 48.
    Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72. doi: 10.1152/physrev.00013.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. doi: 10.1146/annurev-pathol-121808-102144.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tarao K, Fujiyama S, Ohkawa S, Miyakawa K, Tamai S, Hirokawa S, et al. Ursodiol use is possibly associated with lower incidence of hepatocellular carcinoma in hepatitis C virus-associated liver cirrhosis. Cancer Epidemiol Biomark Prev. 2005;14(1):164–9.Google Scholar
  51. 51.
    Oyama K, Shiota G, Ito H, Murawaki Y, Kawasaki H. Reduction of hepatocarcinogenesis by ursodeoxycholic acid in rats. Carcinogenesis. 2002;23(5):885–92.CrossRefPubMedGoogle Scholar
  52. 52.
    Chung GE, Yoon JH, Lee JH, Kim HY, Myung SJ, Yu SJ, et al. Ursodeoxycholic acid-induced inhibition of DLC1 protein degradation leads to suppression of hepatocellular carcinoma cell growth. Oncol Rep. 2011;25(6):1739–46. doi: 10.3892/or.2011.1239.PubMedGoogle Scholar
  53. 53.
    Lim SC, Choi JE, Kang HS, Han SI. Ursodeoxycholic acid switches oxaliplatin-induced necrosis to apoptosis by inhibiting reactive oxygen species production and activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma. Int J Cancer. 2010;126(7):1582–95. doi: 10.1002/ijc.24853.PubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Gastroenterology and MedicineFukuoka University Faculty of MedicineFukuokaJapan

Personalised recommendations