Skip to main content

Mesenchymal Stem Cells

  • Chapter
  • First Online:
Cell Therapy Against Cerebral Stroke

Abstract

Mesenchymal stem cells (MSCs) derived from adult human bone marrow hold a spectrum of functional properties. Intravenous infusion of MSCs provides functional improvements in animal models including cerebral stroke and spinal cord injury. Suggested mechanisms may include neuroprotection, angiogenesis, induction of axonal sprouting, and remyelination.

Therapeutic effects have been reported in animal models of stroke after intravenous infusion of human MSCs derived from adult human bone marrow. Initial clinical studies on intravenously infused MSCs have now been completed in human stroke patients. Here, we review the reparative and protective properties of infused MSCs in stroke models, describe initial human studies on intravenous infusion of MSC in stroke, and provide a perspective on prospects for future progress with MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Honma T, Honmou O, Iihoshi S, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol. 2006;199:56–66.

    Article  CAS  PubMed  Google Scholar 

  2. Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res. 2004;1007:1–9.

    Article  CAS  PubMed  Google Scholar 

  3. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.v. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kobune M, Kawano Y, Ito Y, et al. Telomerized human multipotent mesenchymal cells can differentiate into hematopoietic and cobblestone area–supporting cells. Exp Hematol. 2003;31:715–22.

    Article  CAS  PubMed  Google Scholar 

  5. Cramer SC, Finklestein SP, Schaechter JD, Bush G, Rosen BR. Activation of distinct motor cortex regions during ipsilateral and contralateral finger movements. J Neurophysiol. 1999;81:383–7.

    CAS  PubMed  Google Scholar 

  6. Jiang Q, Ewing JR, Zhang ZG, Zhang RL, Hu J, Divine GW, Arniego P, Li QJ, Chopp M. Magnetization transfer MRI: application to treatment of middle cerebral artery occlusion in rat. J Magn Reson Imaging. 2001;13:178–84.

    Article  CAS  PubMed  Google Scholar 

  7. Chopp M, Zhang ZG, Jiang Q. Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke. Stroke. 2007;38:827–31.

    Article  PubMed  Google Scholar 

  8. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology. 2002;22:275–9.

    Article  PubMed  Google Scholar 

  9. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, Kocsis JD. Neuroprotection by PIGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129:2734–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73:778–86.

    Article  CAS  PubMed  Google Scholar 

  11. Kurozumi K, Nakamura K, Tamiya T, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9:189–97.

    Article  CAS  PubMed  Google Scholar 

  12. Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res. 2006;84:1495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci. 2009;29:14932–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216:47–55.

    Article  CAS  PubMed  Google Scholar 

  15. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:329–40.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z. Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med. 2002;12:62–6.

    Article  CAS  PubMed  Google Scholar 

  17. Carmeliet P, Collen D. Molecular analysis of blood vessel formation and disease. Am J Physiol. 1997;273:H2091–104.

    CAS  PubMed  Google Scholar 

  18. Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM. Regulation of microvascular permeability by vascular endothelial growth factors. J Anat. 2002;200:581–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sasaki M, Lankford KL, Brown RJ, Ruddle NH, Kocsis JD. Focal experimental autoimmune encephalomyelitis in the Lewis rat induced by immunization with myelin oligodendrocyte glycoprotein and intraspinal injection of vascular endothelial growth factor. Glia. 2010;58:1523–31.

    Article  PubMed  Google Scholar 

  20. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998;282:468–71.

    Article  CAS  PubMed  Google Scholar 

  21. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ward NL, Lamanna JC. The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res. 2004;26:870–83.

    Article  CAS  PubMed  Google Scholar 

  23. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286:2511–4.

    Article  CAS  PubMed  Google Scholar 

  24. Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF. Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest. 2002;82:387–401.

    Article  CAS  PubMed  Google Scholar 

  25. Baffert F, Le T, Thurston G, McDonald DM. Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am J Physiol Heart Circ Physiol. 2006;290:H107–18.

    Article  CAS  PubMed  Google Scholar 

  26. Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet. 2003;4:710–20.

    Article  CAS  PubMed  Google Scholar 

  27. Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res. 2000;60:55–69.

    Article  CAS  PubMed  Google Scholar 

  28. Miki Y, Nonoguchi N, Ikeda N, Coffin RS, Kuroiwa T, Miyatake S. Vascular endothelial growth factor gene-transferred bone marrow stromal cells engineered with a herpes simplex virus type 1 vector can improve neurological deficits and reduce infarction volume in rat brain ischemia. Neurosurgery. 2007;61:586–94. discussion 594–5.

    Article  PubMed  Google Scholar 

  29. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  CAS  PubMed  Google Scholar 

  31. Alvarez-Buylla A, Lim DA. For the long run. Neuron. 2004;41:683–6.

    Article  CAS  PubMed  Google Scholar 

  32. Luskin MB, Zigova T, Soteres BJ, Stewart RR. Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol Cell Neurosci. 1997;8:351–66.

    Article  CAS  PubMed  Google Scholar 

  33. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M. One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke. 2007;38:2150–6.

    Article  PubMed  Google Scholar 

  34. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57:874–82.

    Article  PubMed  Google Scholar 

  35. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28:1099–106.

    Article  PubMed  Google Scholar 

  36. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134:1790–807.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sasaki M, Honmou O, Radtke C, Kocsis JD. Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. infusion of human mesenchymal stem cells. PLoS ONE. 2011. doi:10.1371/journal.pone.0026577.

    Google Scholar 

  38. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176:57–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Sasaki M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Sasaki, M., Honmou, O. (2017). Mesenchymal Stem Cells. In: Houkin, K., Abe, K., Kuroda, S. (eds) Cell Therapy Against Cerebral Stroke. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56059-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56059-3_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56057-9

  • Online ISBN: 978-4-431-56059-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics