Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan

  • Akiyoshi WadaEmail author


In 2013, sea-level pressure within Typhoon Man-yi dropped by more than 15 hPa in 6 h. The storm underwent extremely rapid intensification just north of 30°N near the coast of Japan. This study evaluated the importance of preexisting oceanic conditions around the Kuroshio Current for the rapid intensification, by performing a set of sensitivity experiments using an atmosphere-wave-ocean–coupled model. The results of both the sensitivity experiments and various observations suggest that warm water conditions in the ocean played a decisive role in the intensification and steepening of the sea-level pressure gradient within the storm area, whereas storm-induced sea surface cooling was important in suppressing excessive intensification during the early intensification phase of Man-yi. The rapid intensification was caused by excitement of a mesovortex inside the radius of the maximum surface wind. This unusual excitement was related to barotropic-convective instability induced by relatively high sea surface temperature and steep horizontal gradients in both sea-level pressure and tangential wind on the downshear side of the environmental vertical windshear vector. The local Rossby penetration depth around the mesovortex increased because of reduced static stability, increased relative vorticity, and an increase of the Coriolis parameter on the downshear side of the environmental vertical windshear vector where warm water in the ocean was transported along the Kuroshio Current. Preexisting high sea surface temperature conditions and storm-induced sea surface cooling also affected the extraordinarily heavy rainfall, particularly in the northern Kinki districts, which was simulated reasonably well in the numerical experiments.


Rapid intensification Kuroshio Mesovortex Atmosphere-wave-ocean–coupled model 



The author is grateful to Mr. S. Ishizaki for providing operational oceanic data. The author wishes to thank Mr. R. Oyama, Dr. S. Kanada, Mr. U. Shimada and Dr. N. Usui for fruitful discussions and two reviewers for providing useful comments to improve the manuscript. This work was funded by KAKENHI Grant Number 25106708 from MEXT.


  1. Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comp Mach 17:589–602CrossRefGoogle Scholar
  2. Arakane S, Satoh M, Yanase W (2014) Excitation of deep convection to the north of tropical storm Bebinca (2006). J Meteor Soc Japan 92:141–161. doi: 10.2151/jmsj.2014-201 CrossRefGoogle Scholar
  3. Bao JW, Wilczak JM, Choi JK, Kantha LH (2000) Numerical simulations of air–sea interaction under high wind conditions using a coupled model: a study of hurricane development. Mon Weather Rev 128:2190–2210. doi: 10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2 CrossRefGoogle Scholar
  4. Bender MA, Ginis I, Kurihara Y (1993) Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J Geophys Res 98:23245–23263CrossRefGoogle Scholar
  5. Black ML, Gamache JF, Marks FD Jr, Samsury CE, Willoughby HE (2002) Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: the effect of vertical shear on structure and intensity. Mon Weather Rev 130:2291–2312CrossRefGoogle Scholar
  6. Cazenave A, Remy F (2011) Sea level and climate: measurements and causes of changes. WIREs Clim Change 2:647–662CrossRefGoogle Scholar
  7. Cecil DJ, Zipser EJ (1999) Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon Weather Rev 127:103–123CrossRefGoogle Scholar
  8. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary Layer Meteorol 18:495–527. doi: 10.1007/BF00119502 CrossRefGoogle Scholar
  9. Deardorff JW (1983) A multi-limit mixed-layer entrainment formulation. J Phys Oceanogr 13:988–1002. doi: 10.1175/1520-0485(1983)013<0988:AMLMLE>2.0.CO;2 CrossRefGoogle Scholar
  10. Dvorak VF (1975) Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon Weather Rev 103(5):420–430CrossRefGoogle Scholar
  11. Hawkins JD, Turk FJ, Lee TF, Richardson K (2008) Observations of tropical cyclones with the SSMIS, Geoscience and Remote Sensing. IEEE Transactions 46:901–912. doi: 10.1109/TGRS.2008.915753 Google Scholar
  12. Hence DA, Houze RA Jr (2011) Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J Atmos Sci 68:1637–1652CrossRefGoogle Scholar
  13. Ito K, Ishikawa Y, Miyamoto Y, Awaji T (2011) Short-time-scale processes in a mature hurricane as a response to sea surface fluctuations. J Atmos Sci 68:2250–2272CrossRefGoogle Scholar
  14. Jones SC (1995) The evolution of vortices in vertical shear. I: initially barotropic vortices. Q J R Meteorol Soc 121:821–851CrossRefGoogle Scholar
  15. Kanada S, Wada A, Sugi M (2013) Future changes in structures of extremely intense tropical cyclones using a 2-km Mesh Nonhydrostatic Model. J Clim 26:9986–10005CrossRefGoogle Scholar
  16. Kaplan J, DeMaria M, Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and Eastern North Pacific Basins. Weather Forecast 25:220–241CrossRefGoogle Scholar
  17. Kawai Y, Wada A (2007) Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: a review. J Oceanogr 63:721–744. doi: 10.1007/s10872-007-0063-0 CrossRefGoogle Scholar
  18. Kawai Y, Miyama T, Iizuka S, Manda A, Yoshioka MK, Katagiri S, Tachibana Y, Nakamura H (2015) Marine atmospheric boundary layer and low-level cloud responses to the Kuroshio Extension front in the early summer of 2012: three-vessel simultaneous observations and numerical simulations. J Oceanogr. doi: 10.1007/s10872-014-0266-0 (In press)Google Scholar
  19. Kelly KA, Small RJ, Samelson RM, Qiu B, Joyce TM, Kwon Y-O, Cronin M (2010) Western boundary currents and frontal air–sea interaction: gulf Stream and Kuroshio Extension. J Clim 23:5644–5667. doi: 10.1175/2010JCLI3346.1 CrossRefGoogle Scholar
  20. Klemp JB, Wilhelmson R (1978) The simulation of three-dimensional convective storm dynamics. J Atmos Sci 35:1070–1096. doi: 10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2 CrossRefGoogle Scholar
  21. Koba H, Hagiwara T, Osano S, Akashi S (1990) Relationship between the CI-number and central pressure and maximum wind speed in typhoons. J Meteor Res 42:59–67 (in Japanese)Google Scholar
  22. Kondo J (1975) Air-sea bulk transfer coefficients in diabatic conditions. Boundary Layer Meteorol 9:91–112. doi: 10.1007/BF00232256 CrossRefGoogle Scholar
  23. Kossin JP, Schubert WH (2001) Mesovortices, polygonal flow patterns and rapid pressure falls in hurricane-like vortices. J Atmos Sci 58:1079–1090CrossRefGoogle Scholar
  24. Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352. doi: 10.1038/nature13278 CrossRefGoogle Scholar
  25. Kwon Y-O, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson L (2010) Role of the Gulf 487 Stream and Kuroshio-Oyashio system in large-scale atmosphere-ocean interaction: a review. J Clim 23:3249–3281. doi: 10.1175/2010JCLI3343.1 CrossRefGoogle Scholar
  26. Leipper DF, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2:218–224CrossRefGoogle Scholar
  27. Lin YH, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092. doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 CrossRefGoogle Scholar
  28. Lin I-I, Wu C-C, Emanuel KA, Lee I-H, Wu C-R, Pan I-F (2005) The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon Weather Rev 133:2635–2649. doi: 10.1175/MWR3005.1 CrossRefGoogle Scholar
  29. Lin I-I, Wu C-C, Pun I-F, Ko D-S (2008) Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensification. Mon Weather Rev 136:3288–3306. doi: 10.1175/2008MWR2277.1 CrossRefGoogle Scholar
  30. Lin I-I, Black P, Price JF, Yang C-Y, Chen SS, Lien C-C, Harr P, Chi N-H, Wu C-C, D’Asaro EA (2013) An ocean coupling potential intensity index for tropical cyclones. Geophys Res Lett 40:1878–1882. doi: 10.1002/grl.50091 CrossRefGoogle Scholar
  31. Lloyd ID, Vecchi GA (2011) Observational evidence for oceanic controls on hurricane intensity. J Clim 24(4):1138–1153CrossRefGoogle Scholar
  32. Makihara Y (1996) A method for improving radar estimates of precipitation by comparing data from radars and rain gauges. J Meteor Soc Japan 74:459480Google Scholar
  33. Mei W, Primeau F, McWilliams JC, Pasquero C (2013) Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proc Natl Acad Sci USA 38:15207–15210CrossRefGoogle Scholar
  34. Montgomery MT, Kallenbach RJ (1997) A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Q J R Meteorol Soc 123:435–465CrossRefGoogle Scholar
  35. Montgomery MT, Smith RK, Bguyen SV (2010) Sensitivity of tropical-cyclone models to the surface drag coefficient. Q J R Meteorol Soc 136:1945–1953CrossRefGoogle Scholar
  36. Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260CrossRefGoogle Scholar
  37. Nguyen MC, Reeder MJ, Davidson NE, Smith RK, Montgomery MT (2011) Inner-core vacillation cycles during the intensification of Hurricane Katrina. Q J R Meteorol Soc 137:829–844. doi: 10.1002/qj.823 CrossRefGoogle Scholar
  38. Nolan DS, Zhang JA, Stern DP (2009) Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of hurricane Isabel (2003). Part I: initialization, maximum winds, and the outer-core boundary layer. Mon Weather Rev 137:3651–3674CrossRefGoogle Scholar
  39. Palmén EH (1948) On the formation and structure of tropical cyclones. Geophysica 3:26–38Google Scholar
  40. Pun I-F, Lin I-I, Lo M-H (2013) Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys Res Lett 40:4680–4684. doi: 10.1002/grl.50548 CrossRefGoogle Scholar
  41. Qiu B, Chen S (2012) Multi-decadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J Phys Oceanogr 42:193–206. doi: 10.1175/JPO-D-11-061.1 CrossRefGoogle Scholar
  42. Reasor PD, Eastin MD (2012) Rapidly intensifying hurricane Guillermo (1997). Part II: resilience in shear. Mon Weather Rev 140:425–444CrossRefGoogle Scholar
  43. Reasor PD, Rogers R, Lorsolo S (2013) Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon Weather Rev 141:2949–2969CrossRefGoogle Scholar
  44. Rogers R, Reasor P, Lorsolo S (2013) Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon Weather Rev 141:2970–2991CrossRefGoogle Scholar
  45. Saito K (2012) The JMA Nonhydrostatic model and its applications to operation and research. In: Yucel I (ed) Atmospheric Model Applications. InTech, Croatia, pp 85–110. doi: 10.5772/35368 Google Scholar
  46. Schubert WH, Montgomery MT, Taft RK, Guinn TA, Fulton SR, Kossin JP, Edwards JP (1999) Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J Atmos Sci 56:1197–1223. doi: 10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2 CrossRefGoogle Scholar
  47. Shay LK (2010) Air-sea interactions in tropical cyclones. In: Chan JCL, Kepert JD (eds) Global perspective on tropical cyclones from science to mitigation. World Scientific, Singapore, pp 93–132CrossRefGoogle Scholar
  48. Shay LK, Goni GJ, Black PG (2000) Role of a warm ocean feature on Hurricane Opal. Mon Weather Rev 128:1366–1383CrossRefGoogle Scholar
  49. Small RJ, deSzoeke SP, Xie SP, O’Neil L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319CrossRefGoogle Scholar
  50. Smith RK, Thomsen GL (2010) Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Q J R Meteorol Soc 136A:1671–1685CrossRefGoogle Scholar
  51. Spencer RW, Goodman HM, Hood RE (1989) Precipitation retrieval over land and ocean with the SSM/I: identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol. 6:254–273CrossRefGoogle Scholar
  52. Sugi M, Kuma K, Tada K, Tamiya K, Hasegawa N, Iwasaki T, Yamada S, Kitade T (1990) Description and performance of the JMA operational global spectral model (JMA-GSM88). Geophys Mag 43:105–130Google Scholar
  53. Taylor PK, Yelland MJ (2001) The dependence of sea surface roughness on the height and steepness of the waves. J Phys Oceanogr 31:572–590. doi: 10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2 CrossRefGoogle Scholar
  54. Thomsen GL, Montgomery MT, Smith RK (2014) Sensitivity of tropical-cyclone intensification to perturbation in the surface drag coefficient. Q J R Meteorol Soc 140:407–415CrossRefGoogle Scholar
  55. Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Adv Space Res 37:806–822. doi: 10.1016/j.asr.2005.09.022 CrossRefGoogle Scholar
  56. Wada A (2002) The processes of SST cooling by typhoon passage and case study of Typhoon Rex with a mixed layer ocean model. Pap Met Geophys 52:31–66. doi: 10.2467/mripapers.52.31 CrossRefGoogle Scholar
  57. Wada A (2009) Idealized numerical experiments associated with the intensity and rapid intensification of stationary tropical-cyclone-like vortex and its relation to initial sea-surface temperature and vortex-induced sea-surface cooling. J Geophys Res 114:D18111. doi: 10.1029/2009JD011993 CrossRefGoogle Scholar
  58. Wada A (2012) Rapid intensification of Typhoon Roke in 2011. CAS/JSC WGNE Res Activities Atm Ocean Model 42:9.03–9.04Google Scholar
  59. Wada A (2013) Sensitivity of horizontal resolution and sea spray to the simulations of Typhoon Roke in 2011. CAS/JSC WGNE Res Activities Atm Ocean Model 43:7–9Google Scholar
  60. Wada A, Chan JCL (2008) Relationship between typhoon activity and upper ocean heat content. Geophys Res Lett 35:L17603. doi: 10.1029/2008GL035129 CrossRefGoogle Scholar
  61. Wada A, Niino H, Nakano H (2009) Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998). J Oceanogr 65:373–396. doi: 10.1007/s10872-009-0034-8 CrossRefGoogle Scholar
  62. Wada A, Kohno N, Kawai Y (2010) Impact of wave-ocean interaction on Typhoon Hai-Tang in 2005. SOLA 6A:13–16. doi: 10.2151/sola.6A-004 CrossRefGoogle Scholar
  63. Wada A, Cronin MF, Sutton AJ, Kawai Y, Ishii M (2013) Numerical simulations of oceanic pCO2 variations and interactions between Typhoon Choi-wan (0914) and the ocean. J Geophys Res Ocean 118:2667–2684CrossRefGoogle Scholar
  64. Wang B, Zhou X (2008) Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteorol Atmos Phys 99:1–16. doi: 10.1007/s00703-006-0238-z CrossRefGoogle Scholar
  65. Yablonsky R, Ginis I (2009) Limitation of one-dimensional ocean models for coupled hurricane-ocean model forecasts. Mon Weather Rev 137(12):4410–4419CrossRefGoogle Scholar
  66. Zhang JA, Katsaros KB, Black PG, Lehner S, French JR, Drennan WM (2008) Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Boundary Layer Meteorol 128:173–189CrossRefGoogle Scholar
  67. Zhu P (2008) Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J Geophys Res Atmos 113:D17104. doi: 10.1029/2007JD009643 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Meteorological Research Institute, Japan Meteorological AgencyTsukubaJapan

Personalised recommendations