Skip to main content

Early summertime interannual variability in surface and subsurface temperature in the North Pacific

  • Chapter
  • First Online:
“Hot Spots” in the Climate System

Abstract

Vertical structures of early summer ocean temperature variability on interannual and longer time scales in the North Pacific (NP) are investigated based on observational data obtained by the Argo. In the central and especially eastern NP regions, temperature variance is large but limited to the shallower layer. Given shallow mixed layer isolated by strong stratification from the subsurface layer due to strong short wave radiation in summer, the limitation to the shallower layer is expected. On the contrary, temperature variability in the western NP region frequently extends several hundred meters in depth. In the western NP, longer time scale variability of temperature is also apparent as temperature difference before and after 2008. Solutions of an eddy-resolving ocean general circulation model strongly suggest that the temperature variability is associated with changes in the oceanic frontal structures that extend to subsurface layer: enhancement of the northern branch of Kuroshio Extension and associated weakened meridional temperature gradients to the south and north of the current after 2008. The deep structure of temperature variability apparently indicates that it is caused not by atmospheric thermal forcing, but by oceanic structure changes, and it is corroborated by the similar variability in the subsurface salinity field. Also, it is shown that atmospheric thermal forcing strongly affects early summer sea surface temperature variability in the eastern NP, but not in the western NP.

This chapter is re-publication of the article (DOI:10.1007/s10872-015-0307-3) from the journal “Journal of Oceanography”

Received: 23 August 2014 / Revised: 4 April 2015 / Accepted: 7 June 2015 / Published online: 28 June 2015

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137

    Article  Google Scholar 

  • Argo Data Management Team (2002) Report of the Argo data management meeting. In: Proceedings of the Argo data management third meeting, marine environmental data, Ottawa, ON, Canada, p 42

    Google Scholar 

  • Argo Science Team (2001) Argo: the global array of profiling floats. In: Koblinsky CJ, Smith NR (eds) Observing the oceans in the 21st century. GODAE Project Office, Bureau of Meteorology, Melbourne, pp 248–258

    Google Scholar 

  • Ashok K, Yamagata T (2009) The El Nino with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Freilich MH, Millif RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978–983

    Article  Google Scholar 

  • Ducet N, Le Traon P-Y, Reverdin G (2000) Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res 105:19477–19498

    Article  Google Scholar 

  • Frankignoul C, Sennechael N, Kwon Y-O, Alexander MA (2011) Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J Clim 24:762–777. doi:10.1175/2010JCLI3731.1

    Article  Google Scholar 

  • Hasegawa T, Ando K, Ueki I, Mizuno K, Hosoda S (2014) Upper-ocean salinity variability in the tropical pacific: case study for quasi-decadal shift during the 2000s using TRITON buoys and Argo floats. J Clim 26:8126–8138. doi:10.1175/JCLI-D-12-00187.1

    Article  Google Scholar 

  • Hosoda S, Ohira T, Nakamura T (2008) A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep Res Dev 8:47–59

    Article  Google Scholar 

  • Hosoda S, Nonaka M, Tomita T, Taguchi B, Tomita H, Iwasaka N (2015) Impact of downward heat penetration below shallow seasonal thermocline on sea surface temperature. J Oceanogr. doi:10.1007/s10872-015-0275-7

    Google Scholar 

  • Kida S et al (2015) Oceanic fronts and jets around Japan—a review. J Oceanogr. doi:10.1007/s10872-015-0283-7

    Google Scholar 

  • Komori N, Takahashi K, Komine K, Motoi T, Zhang X, Sagawa G (2005) Description of sea-ice component of coupled ocean–sea-ice model for the Earth Simulator (OIFES). J Earth Simul 4:31–45

    Google Scholar 

  • Kwon Y-O, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson L (2010) Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review. J Clim 23:3249–3281. doi:10.1175/2010JCLI3343.1

    Article  Google Scholar 

  • Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T (2004) A fifty-year eddy-resolving simulation of the World Ocean: preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simul 1:35–56

    Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209. doi:10.1038/nature06690

    Article  Google Scholar 

  • Miyama T, Nonaka M, Nakamura H, Kuwano-Yoshida A (2012) A striking early-summer event of a convective rainband persistent along the warm Kuroshio in the East China Sea. Tellus A 64:1–9. doi:10.3402/tellusa.v64i0.18962

    Article  Google Scholar 

  • Mizuno K, White WB (1983) Annual and interannual variability in the Kuroshio Current system. J Phys Oceanogr 13:1847–1867

    Article  Google Scholar 

  • Nakamura M, Miyama T (2014) Impacts of the Oyashio temperature front on the regional climate. J Clim 27:7861–7873. doi:10.1175/JCLI-D-13-00609.1

    Article  Google Scholar 

  • Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm track, jet streams and midlatitude oceanic fronts. In: Wang C, Xie S-P, Carton JA (eds) Earth’s climate: the ocean–atmosphere interaction, geophysical monograph series, vol 147. AGU, Washington, D.C., pp 329–345

    Google Scholar 

  • Nakamura H, Sampe T, Goto A, Ohfuchi W, Xie S-P (2008) On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett 35(15):L15709. doi:10.1029/2008GL34010

    Article  Google Scholar 

  • Namias J, Born RM (1970) Temporal coherence in North Pacific sea-surface temperature patterns. J Geophys Res 75. doi:10.1029/JC075i030p05952

    Google Scholar 

  • Nonaka M, Xie S-P (2003) Covariations of sea surface temperature and wind over the Kuroshio and its extension: evidence for ocean-to-atmosphere feedback. J Clim 16:1404–1413

    Article  Google Scholar 

  • Nonaka M, Nakamura H, Tanimoto Y, Kagkimoto T, Sasaki H (2006) Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J Clim 19:1970–1989

    Article  Google Scholar 

  • Nonaka M, Nakamura H, Tanimoto Y, Kagkimoto T, Sasaki H (2008) Interannual-to-decadal variability in the Oyashio and its influence on temperature in the subarctic frontal zone: an eddy-resolving OGCM simulation. J Clim 21:6283–6303

    Article  Google Scholar 

  • Nonaka M, Nakamura H, Taguchi B, Komori N, Kuwano-Yoshida A, Takaya K (2009) Air–sea heat exchanges characteristic of a prominent midlatitude oceanic front in the south Indian ocean as simulated in a high-resolution coupled GCM. J Clim 22:6515–6535

    Article  Google Scholar 

  • Norris JR (2000) Interannual and interdecadal variability in the storm track, cloudiness, and sea surface temperature over the summertime North Pacific. J Clim 13:422–430

    Article  Google Scholar 

  • O’Neill LW, Chelton DB, Esbensen SK (2003) Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal time scales. J Clim 16:2340–2354

    Article  Google Scholar 

  • O’Reilly CH, Czaja A (2014) The response of the pacific storm track and atmospheric circulation to Kuroshio Extension variability. Q J R Meteorol Soc. doi:10.1002/qj.2334

    Google Scholar 

  • Ogawa F, Nakamura H, Nishii K, Miyasaka T, Kuwano-Yoshida A (2012) Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys Res Lett 39:L05804. doi:10.1029/2011GL049922

    Article  Google Scholar 

  • Okajima S, Nakamura H, Nishii K, MiyasakaI T, Kuwano-Yoshida A (2014) Assessing the importance of prominent warm SST anomalies over the midlatitude North Pacific in forcing large-scale atmospheric anomalies during 2011 summer and autumn. J Clim 27:3889–3903

    Article  Google Scholar 

  • Onogi K et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (2000) MOM 3.0 manual. Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, p 680

    Google Scholar 

  • Picault J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274:1486–1489

    Article  Google Scholar 

  • Qiu B, Hacker P, Chen S, Donohue KA, Watts DR (2006) Observations of the subtropical mode water evolution from the Kuroshio Extension system study. J Phys Oceanogr 36:457–472

    Article  Google Scholar 

  • Sampe T, Nakamura H, Goto A, Ohfuchi W (2010) Significance of a midlatitude oceanic frontal zone in the formation of a storm track and an eddy-driven westerly jet. J Clim 23:1793–1814

    Article  Google Scholar 

  • Sasaki H, Klein P (2012) SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J Phys Oceanogr 42:1233–1241. doi:10.1175/JPO-D-11-0180.1

    Article  Google Scholar 

  • Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and ocean. Springer, Berlin, pp 157–185

    Chapter  Google Scholar 

  • Sasaki YN, Minobe S, Asai T, Inatsu M (2012) Influence of the Kuroshio in the East China Sea on the early summer (Baiu) rain. J Clim 27:6627–6645

    Article  Google Scholar 

  • Sasaki YN, Minobe S, Schneider N (2013) Decadal response of the Kuroshio Extension jet to Rossby waves: observation and thin-jet theory. J Phys Oceanogr 43:442–456

    Article  Google Scholar 

  • Small RJ, de Szoeke SP, Xie S-P, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319

    Article  Google Scholar 

  • SSALTO/DUACS User Handbook (2011) (M)SLA and (M)ADT near-real time and delayed time products. CLS-DOS-NT-06-034, Issue 4.2

    Google Scholar 

  • Sugimoto S (2014) Influence of SST anomalies on winter turbulent heat fluxes in the Eastern Kuroshio–Oyashio confluence region. J Clim 27:9349–9358. doi:10.1175/JCLI-D-14-00195.1

    Article  Google Scholar 

  • Sugimoto S, Hanawa K (2011) Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio–Oyashio confluence region: influences of warm eddies detached from the Kuroshio Extension. J Clim 24:6551–6561

    Article  Google Scholar 

  • Taguchi B, Xie S-P, Mitsudera H, Kubokawa A (2005) Response of the Kuroshio Extension to Rossby waves associated with the 1970s climate regime shift in a high-resolution ocean model. J Clim 18(15):2979–2995

    Article  Google Scholar 

  • Taguchi B, Nakamura H, Nonaka M, Xie S-P (2009) Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J Clim 22:6536–6560

    Article  Google Scholar 

  • Taguchi B, Nakamura H, Nonaka M, Komori N, Kuwano-Yoshida A, Takaya K, Goto A (2012) Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: observations and a coupled model simulation. J Clim 25:111–139

    Article  Google Scholar 

  • Tanimoto Y, Xie S-P, Kai K, Okajima H, Tokinaga H, Murayama T, Nonaka M, Nakamura H (2009) Observations of marine atmospheric boundary layer transitions across the summer Kuroshio Extension. J Clim 22:1360–1374

    Article  Google Scholar 

  • Tomita T, Sato H, Nonaka M, Hara M (2007) Interdecadal variability of the early summer surface heat flux in the Kuroshio region and its impact on the Baiu frontal activity. Geophys Res Lett 34, L10708. doi:10.1029/2007GL029676

  • Xie S-P (2004) Satellite observations of cool ocean–atmosphere interaction. Bull Am Meteorol Soc 85:195–208

    Article  Google Scholar 

  • Xie S-P, Kunitani T, Kubokawa A, Nonaka M, Hosoda S (2000) Interdecadal thermocline variability in the North Pacific for 1958–97: a GCM simulation. J Phys Oceanogr 30:2798–2813

    Article  Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, Woods Hole, MA, p 64

    Google Scholar 

Download references

Acknowledgments

This study is supported in part by the Japan Society of Promotion of Science (JSPS) through Grants-in-Aid for Scientific Research in Innovative Areas 2205. The Earth Simulator was utilized in support of JAMSTEC. Members of the Argo Data Management Team of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) helped with the use of Argo float data and refinement of the data set. Also, the authors thank two reviewers for their constructive comments that helped improve this study. Argo float data were obtained from the GDAC web sites at http://www.coriolis.eu.org/ and http://www.usgodae.org/argo/argo.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Hosoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Oceanographic Society of Japan and Springer Japan

About this chapter

Cite this chapter

Hosoda, S., Nonaka, M., Sasai, Y., Sasaki, H. (2016). Early summertime interannual variability in surface and subsurface temperature in the North Pacific. In: Nakamura, H., Isobe, A., Minobe, S., Mitsudera, H., Nonaka, M., Suga, T. (eds) “Hot Spots” in the Climate System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56053-1_6

Download citation

Publish with us

Policies and ethics