Heat and salt budgets of the mixed layer around the Subarctic Front of the North Pacific Ocean

  • Vincent FaureEmail author
  • Yoshimi Kawai


The Subarctic Front (SAF) of the North Pacific Ocean is important because it considerably affects the storm track in the troposphere, and mode water ocean mixed layer (OML) forms south of the front. However, processes controlling the sea surface temperature and salinity in the area of the SAF are not fully understood. Using Argo, satellite, and atmospheric reanalysis data, we investigate the OML heat budget seasonal cycle around the SAF in a domain defined by 150°–168°E and 40°–46°N. In summer, a large imbalance suggests a non-negligible cooling effect due to vertical mixing. In winter, we find that in the area of mode water OML, air–sea fluxes contribute to 60 % of heat dissipation. The remaining cooling is due to lateral advection and mixed layer base entrainment, while eddies warm the OML. North of the SAF, the geostrophic and Ekman flows have comparable cooling effects. Entrainment also cools the OML in fall, but vanishes in winter. In March, entrainment warming due to a temperature inversion below the OML is found to be negligible. We also estimate the salinity budget of the OML. In winter, entrainment contributes to a salinity increase north of the SAF, but it is negligible in the mode water OML area. The contribution of salinity to buoyancy loss during fall and winter OML deepening is relatively small, especially south of the front where it accounts for only 6 % of total buoyancy loss.


Ocean mixed layer Heat budget Salt budget Subarctic Front Kuroshio-Oyashio extension Mode water Ekman advection Geostrophic advection Air–sea flux Mixed layer base entrainment 



This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Grant-in-Aid for Scientific Research on Innovative Areas (22106007). AMSR-E data are produced by Remote Sensing Systems (RSS; and sponsored by the NASA Earth Science MEaSUREs DISCOVER Project and the AMSR-E Science Team. WindSat is sponsored by the NASA Earth Science Physical Oceanography Program. The QuikSCAT data are provided by RSS, sponsored by the NASA Ocean Vector Winds Science Team. The Ssalto/Duacs data is distributed by Aviso with support from CNES. The WHOI OAFlux project is funded by the NOAA Climate Observations and Monitoring (COM) program. We thank three anonymous reviewers for their helpful comments.


  1. Argo (2014) Argo floats data and metadata from Global Data Assembly Centre (Argo GDAC)—snapshot of Argo GDAC as of February, 8th data. Data, Ifremer. doi: 10.12770/5fc4ee78-84e5-4f4c-a2ee-798beefb14e1
  2. Cerovečki I, Talley LD, Mazloff MR (2011) A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J Clim 24(24):6283–6306. doi: 10.1175/2011JCLI3858.1 CrossRefGoogle Scholar
  3. de Boisséson E, Thierry V, Mercier H, Caniaux G (2010) Mixed layer heat budget in the Iceland Basin from Argo. J Geophys Res Oceans 115(C10). doi: 10.1029/2010JC006283
  4. de Boyer Montégut C, Mignot J, Lazar A, and Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 1. general description. J Geophys Res 112(C6), C06,011Google Scholar
  5. Dong S, Garzoli SL, and Baringer M (2009) An assessment of the seasonal mixed layer salinity budget in the Southern Ocean. J Geophys Res 114(C12), C12,001Google Scholar
  6. Emery WJ, Thomson RE (2001) Data analysis methods in physical oceanography, 2nd edn. Elsevier, LondonGoogle Scholar
  7. Faure V, Arhan M, Speich S, Gladyshev S (2011) Heat budget of the surface mixed layer south of Africa. Ocean Dyn 61(10):1441–1458. doi: 10.1007/s10236-011-0444-1 CrossRefGoogle Scholar
  8. Favorite F, Dodimead AJ, Nasu K (1976) Oceanography of the subarctic pacific region, 1960–1971. Bull Int North Pac Fish Commun 33:1–187Google Scholar
  9. Helber RW, Kara AB, Richman JG, Carnes MR, Barron CN, Hurlburt HE, Boyer T (2012) Temperature versus salinity gradients below the ocean mixed layer. J Geophys Res 117(C5). doi: 10.1029/2011JC007382 Google Scholar
  10. Isoguchi O, Kawamura H, Oka E (2006) Quasi-stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. J Geophys Res 111(C10). doi: 10.1029/2005JC003402
  11. Itoh S, Yasuda I (2010) Characteristics of mesoscale eddies in the Kuroshio-Oyashio extension region detected from the distribution of the sea surface height anomaly. J Phys Oceanogr 40(5):1018–1034CrossRefGoogle Scholar
  12. Kantha L (2010) Modeling turbulent mixing in the global ocean: second moment closure models, chap. 1, pp. 1–68, Nova Science PublishersGoogle Scholar
  13. Kara AB, Rochford PA, Hurlburt HE (2000) Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J Geophys Res 105(C7):16783–16801CrossRefGoogle Scholar
  14. Kawai Y, Tomita H, Cronin MF, Bond NA (2014) Atmospheric pressure response to mesoscale sea surface temperature variations in the Kuroshio Extension region: in situ evidence. J Geophys Res Atmos 119(13):8015–8031. doi: 10.1002/2013jd021126 CrossRefGoogle Scholar
  15. Kelly KA (2004) The relationship between oceanic heat transport and surface fluxes in the western North Pacific: 1970–2000. J Clim 17(3):573–588. doi: 10.1175/1520-0442(2004);2
  16. Kouketsu S, Tomita H, Oka E, Hosoda S, Kobayashi T, Sato K (2012) The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. J Oceanogr 68(1):63–77. doi: 10.1007/s10872-011-0049-9 CrossRefGoogle Scholar
  17. Masunaga R, Nakamura H, Miyasaka T, Nishii K, and Tanimoto Y (2014) Separation of climatological imprints of the Kuroshio extension and Oyashio fronts on the wintertime atmospheric boundary layer: their sensitivity to SST resolution prescribed for atmospheric reanalysis. J Clim, p. 141126123919008. doi: 10.1175/jcli-d-14-00314.1 Google Scholar
  18. Nakamura H, Sampe T, Goto A, Ohfuchi W, and Xie SP (2008) On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett 35(15), L15,709Google Scholar
  19. Nonaka M, Nakamura H, Tanimoto Y, Kagimoto T, Sasaki H (2006) Decadal variability in the Kuroshio-Oyashio extension simulated in an eddy-resolving OGCM. J Clim 19(10):1970–1989CrossRefGoogle Scholar
  20. Ohno Y, Kobayashi T, Iwasaka N, and Suga T (2004) The mixed layer depth in the North Pacific as detected by the Argo floats. Geophys Res Lett 31(11), L11,306Google Scholar
  21. Oka E, Qiu B (2011) Progress of North Pacific mode water research in the past decade. J Oceanogr 68(1):5–20. doi: 10.1007/s10872-011-0032-5 CrossRefGoogle Scholar
  22. Qiu B, Chen S (2005) Eddy-induced heat transport in the subtropical North Nacific from Argo, TMI, and altimetry measurements. J Phys Oceanogr 35(4):458–473. doi: 10.1175/JPO2696.1 CrossRefGoogle Scholar
  23. Qiu B, Kelly KA (1993) Upper-ocean heat balance in the Kuroshio extension region. J Phys Oceanogr 23(9):2027–2041CrossRefGoogle Scholar
  24. Saito H, Suga T, Hanawa K, Watanabe T (2007) New type of pycnostad in the western subtropical-subarctic transition region of the north pacific: transition region mode water. J Oceanogr 63:589–600. doi: 10.1007/s10872-007-0052-3 CrossRefGoogle Scholar
  25. Sloyan BM, Talley LD, Chereskin TK, Fine R, Holte J (2010) Antarctic intermediate water and Subantarctic mode water formation in the southeast Pacific: the role of turbulent mixing. J Phys Oceanogr 40(7):1558–1574. doi: 10.1175/2010JPO4114.1 CrossRefGoogle Scholar
  26. Suga T, Motoki K, Aoki Y, Macdonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34(1):3–22. doi: 10.1175/1520-0485(2004)0340003:TNPCOW2.0.CO;2
  27. Tanimoto Y, Kanenari T, Tokinaga H, Xie S-P (2011) Sea level pressure minimum along the Kuroshio and its extension. J Clim 24(16):4419–4434. doi: 10.1175/2011jcli4062.1 CrossRefGoogle Scholar
  28. Tokinaga H, Tanimoto Y, Xie S-P, Sampe T, Tomita H, Ichikawa H (2009) Ocean frontal effects on the vertical development of clouds over the Western North Pacific: in situ and satellite observations. J Clim 22(16):4241–4260. doi: 10.1175/2009jcli2763.1 CrossRefGoogle Scholar
  29. Tomita H, and Kubota M (2005) Increase in turbulent heat flux during the 1990s over the Kuroshio/Oyashio extension region. Geophys Res Lett 32(9). doi: 10.1029/2004GL022075
  30. Tomita H, Kako S, Cronin MF, and Kubota M (2010), Preconditioning of the wintertime mixed layer at the Kuroshio extension observatory. J Geophys Res 115(C12), C12,053Google Scholar
  31. Tomita H, Kouketsu S, Oka E, Kubota M (2011) Locally enhanced wintertime air–sea interaction and deep oceanic mixed layer formation associated with the Subarctic Front in the North Pacific. Geophys Res Lett 38(24). doi: 10.1029/2011GL049902 Google Scholar
  32. Ueno H, and Yasuda I (2000) Distribution and formation of the mesothermal structure (temperature inversions) in the North Pacific subarctic region. J Geophys Res 105(C7): 16,885. doi: 10.1029/2000JC900020 Google Scholar
  33. Wunsch C (1996) The ocean circulation inverse problem. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Yim BY, Noh Y, Qiu B, You SH, Yoon JH (2010) The vertical structure of eddy heat transport simulated by an eddy-resolving OGCM. J Phys Oceanogr 40(2):340–353. doi: 10.1175/2009JPO4243.1 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations