Skip to main content

Activity Dependent Protein Transport from the Synapse to the Nucleus

  • Chapter
  • First Online:
Book cover Dendrites

Abstract

It is widely accepted that signaling between synapses and neuronal nuclei regulates activity-dependent gene transcription that plays a crucial role in synaptic plasticity. However, despite many years of research, it is still essentially unclear how signals from distal synapses are transduced to the nucleus. Several studies in the past decade have proposed mechanisms of activity-dependent transport of synaptic proteins to the nucleus. In this chapter we will discuss these mechanisms and how this transport might couple in particular NMDAR activation to specific aspects of gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JP, Dudek SM (2005) Late-phase long-term potentiation: getting to the nucleus. Nat Rev Neurosci 6:737–743

    Article  CAS  PubMed  Google Scholar 

  • Alberni CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:1221–145

    Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11(2):115–116

    Article  CAS  PubMed  Google Scholar 

  • Bading H (2013) Nuclear calcium signaling in the regulation of brain function. Nat Rev Neurosci 14:593–608

    Article  CAS  PubMed  Google Scholar 

  • Behnisch T, Yuanxiang P et al (2011) Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long- term depression. PLoS One 6(2):e17276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications of CREB dependent memory models. Trends Neurosci 33(5):230–240

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yaakov K, Dagan SY et al (2012) Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 31(6):1350–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signaling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  • Brill MS, Ninkovic J, Winpenny E et al (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12:1524–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryantseva SA, Zhapparova ON (2012) Bidirectional transport of organelles: unity and struggle of opposing motors. Cell Biol Invest 36(1):1–6

    Article  Google Scholar 

  • Budnik V, Salinas PC (2011) Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 3(1):151–159

    Article  Google Scholar 

  • Caviston JP, Holzbaur EL (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16(10):530–537

    Article  CAS  PubMed  Google Scholar 

  • Ch’ng TH, Martin KC (2011) Synapse-to-nucleus signaling. Curr Opin Neurobiol 21(2):345–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Ch’ng TH, Uzgil B, Lin P et al (2012) Activity-dependent transport of transcriptional coactivator CRTC1 from synapse to nucleus. Cell 150(1):207–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Christophe D, Christophe-Hobertus C, Pichon B (2000) Nuclear targeting of proteins: how many different signals? Cell Signal 12(5):337–341

    Article  CAS  PubMed  Google Scholar 

  • Chuderland D, Konson A, Seger R (2008) Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell 31(6):850–861

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 24:183–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colin E, Zala D et al (2008) Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 27(15):2124–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deisseroth K, Feng G, Majewska AK et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26(41):10380–10386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deisseroth K, Mermelstein PG et al (2003) Signaling from synapse to nucleus: the logic behind the mechanisms. Curr Opin Neurobiol 13:354–365

    Article  CAS  PubMed  Google Scholar 

  • Dent EW, Bass PW (2014) Microtubules in neurons as information carriers. J Neurochem 192(2):235–239

    Article  Google Scholar 

  • Dent P, Jelinek T, Morrison DK et al (1995) Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science 268(5219):1902–1906

    Article  CAS  PubMed  Google Scholar 

  • Dieterich DC, Karpova A, Mikhaylova M et al (2008) Caldendrin-Jacob: a protein liaison that couples NMDA receptor signaling to the nucleus. PLoS Biol 6:e34

    Article  PubMed  PubMed Central  Google Scholar 

  • Echard A, Jollivet F, Martinez O, Lacapere J, Rousselet A, Janoueix-Lerosey I, Goud B (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279:580–585

    Article  CAS  PubMed  Google Scholar 

  • Fagerlund R, Kinnunen L, Köhler M et al (2005) NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem 280(16):15942–15951

    Article  CAS  PubMed  Google Scholar 

  • Fainzilber M, Budnik V, Segal RA et al (2011) From synapse to nucleus and back again-communication over distance within neurons. J Neurosci 31(45):16045–16048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores K, Seger R (2013) Stimulated nuclear import by β-like importins. F1000Prime Rep 5:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabrucker S, Proepper C, Mangus K, Eckert M, Chhabra R, Schmeisser MJ, Boeckers TM, Grabrucker AM (2014) The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation. Exp Neurol 253:126–137

    Article  CAS  PubMed  Google Scholar 

  • Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium dependent gene transcription in control of synapse development and function. Neuron 59:846–860

    Article  CAS  PubMed  Google Scholar 

  • Guillaud L, Wong R, Hirokawa N (2008) Disruption of KIF17–Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat Cell Biol 10:19–29

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Martin L, Charlton MP, Atwood HL, Zinsmaier KE (2005) The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47:379–393

    Article  CAS  PubMed  Google Scholar 

  • Hanz S, Perlson E, Willis D et al (2003) Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40(6):1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDARs signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signalling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4:261–267

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARS by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    CAS  PubMed  Google Scholar 

  • Harterink M, Hoogenraad CC (2013) Slide to the left and slide to the right: motor coordination in neurons. Dev Cell 26(4):326–328

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301(1):50–59

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa K, Nishi M, Sakamoto H et al (2008) Regional distribution of importin subtype mRNA expression in the nervous system: study of early postnatal and adult mouse. Neuroscience 157:864–877

    Article  CAS  PubMed  Google Scholar 

  • Howe CL (2005) Modeling the signaling endosome hypothesis: why a drive to the nucleus is better than a (random) walk. Theor Biol Med Model 2:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDARs: mechanisms and functional implications. Curr Opin Neurobiol 22(3):496–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe DB, Brown TH (1994) Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J Neurophysiol 72:471–474

    CAS  PubMed  Google Scholar 

  • Jaworski J, Kapitein LC, Gouveia SM et al (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61(1):85–100

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey RA, Ch’ng TH, O’Dell TJ et al (2009) Activity-dependent anchoring of importin alpha at the synapse involves regulated binding to the cytoplasmic tail of the NR1-1a subunit of the NMDA receptor. J Neurosci 29(50):15613–15620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan BA, Fernholz BD, Boussac M et al (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3:857–871

    Article  CAS  PubMed  Google Scholar 

  • Jordan BA, Fernholz BD, Khatri L et al (2007) Activity-dependent AIDA-1 nuclear signaling regulates nucleolar numbers and protein synthesis in neurons. Nat Neurosci 10:427–435

    CAS  PubMed  Google Scholar 

  • Jordan BA, Kreutz MR (2009) Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends Neurosci 32(7):392–401

    Article  CAS  PubMed  Google Scholar 

  • Kapitein LC, Hoogenraad CC (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 46(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Kapur A, Yeckel M, Johnston D (2001) Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway. Neuroscience 107:59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpova A, Mikhaylova M, Bera S et al (2013) Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell 152(5):1119–1133

    Article  CAS  PubMed  Google Scholar 

  • Kaushik R, Grochowska KM, Butnaru I et al (2014) Protein trafficking from synapse to nucleus in control of activity-dependent gene expression. Neuroscience 280C:340–350

    Article  Google Scholar 

  • Kindler S, Dieterich DC, Schütt J et al (2009) Dendritic mRNA targeting of Jacob and N-methyl-D-aspartate-induced nuclear translocation after calpain-mediated proteolysis. J Biol Chem 284:25431–25440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kneussel M, Wagner W (2013) Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nat Rev Neurosci 14(4):233–247

    Article  CAS  PubMed  Google Scholar 

  • Lai KO, Zhao Y, Ch’ng TH et al (2008) Importin-mediated retrograde transport of CREB2 from distal processes to the nucleus in neurons. Proc Natl Acad Sci U S A 105:17175–17180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liot G, Zala D, Pla P et al (2013) Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J Neurosci 33(15):6298–6309

    Article  CAS  PubMed  Google Scholar 

  • Liu L, McBride KM, Reich NC (2005) STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci U S A 102(23):8150–8155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malenka RC, Nicoll RA (1993) NMDAR receptors dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527

    Article  CAS  PubMed  Google Scholar 

  • Marcora E, Kennedy MB (2010) The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum Mol Genet 19(22):4373–4384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcora E, Gowan K, Lee JE (2003) Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc Natl Acad Sci U S A 100(16):9578–9583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matamales M (2012) Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus? F1000Res 1:69

    PubMed Central  Google Scholar 

  • Merriam EB, Lumbard DC, Viesselmann C et al (2011) Dynamic microtubules promote synaptic NMDA receptor-dependent spine enlargement. PLoS One 6(11):e27688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merriam EB, Millette M, Lumbard DC et al (2013) Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J Neurosci 33(42):16471–16482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MJ, Klumpp S, Lipowsky R (2010) Bidirectional transport by molecular motors: enhanced processivity and response to external forces. Biophys J 98(11):2610–2618

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen PV, Abel T, Kandel ER (1994) Requirement of critical period of transcription for induction of late phase LTP. Science 265:1104–1107

    Article  CAS  PubMed  Google Scholar 

  • Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M (1999) Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1:376–382

    Article  CAS  PubMed  Google Scholar 

  • Otis KO, Thompson KR, Martin KC (2006) Importin-mediated nuclear transport in neurons. Curr Opin Neurobiol 16(3):329–335

    Article  CAS  PubMed  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    Article  CAS  PubMed  Google Scholar 

  • Perlson E, Hanz S, Ben-Yaakov K et al (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45(5):715–726

    Article  CAS  PubMed  Google Scholar 

  • Proepper C, Johannsen S, Liebau S et al (2007) Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation. EMBO J 26:7188–7196

    Article  Google Scholar 

  • Roberts AJ, Kon T, Knight PJ et al (2013) Functions and mechanisms of dynein motor proteins. Nat Cell Mol Bio 14:713–726

    Article  CAS  Google Scholar 

  • Saha RN, Dudek SM (2013) Splitting hares and tortoises: a classification of neuronal immediate early gene transcription based on poised RNA polymerase II. Neuroscience 247:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeisser MJ, Grabrucker AM, Bockmann J et al (2009) Synaptic cross-talk between N-methyl-D-aspartate receptors and LAPSER1-beta-catenin at excitatory synapses. J Biol Chem 284:29146–29157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setou M, Seog D-H, Tanaka Y et al (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417:83–87

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ, Kogan JH, Frankland PW et al (1998) CREB and memory. Annu Rev Neurosci 21:127–148

    Article  CAS  PubMed  Google Scholar 

  • Stowers RS, Megeath LJ, Górska-Andrzejak J, Meinertzhagen IA, Schwarz TL (2002) Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36:1063–1077, 2002

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Gusella JF (2002) The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson KR, Otis KO, Chen DY et al (2004) Synapse to nucleus signalling during long-term synaptic plasticity: a role for classical active nuclear import pathway. Neuron 44:997–1009

    CAS  PubMed  Google Scholar 

  • Vickers CA, Dickson KS, Wyllie DA (2005) Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J Physiol 568:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A et al (2004) Interactions between extracellular signal-regulated protein kinase 1, 14-3-3epsilon, and heat shock factor 1 during stress. J Biol Chem 279:49460–49469

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Hong M, Lasser-Ross N et al (2006) Modulation of calcium wave propagation in the dendrites and to the soma of rat hippocampal pyramidal neurons. J Physiol 575:455–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welte MA (2010) Bidirectional transport: matchmaking for motors. Curr Biol 20(9):R410–R413

    Article  CAS  PubMed  Google Scholar 

  • West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921–931

    Article  CAS  PubMed  Google Scholar 

  • Zhai S, Ark ED, Parra-Bueno P et al (2013) Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342(6162):1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Kreutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Bera, S., Bayraktar, G., Grochowska, K.M., da Rosa, M.M., Kreutz, M.R. (2016). Activity Dependent Protein Transport from the Synapse to the Nucleus. In: Emoto, K., Wong, R., Huang, E., Hoogenraad, C. (eds) Dendrites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56050-0_5

Download citation

Publish with us

Policies and ethics