Advertisement

Portable Applications

  • Masaru TsuchiyaEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter describes portable application of fuel cells. After a brief discussion on the advantages of fuel cells over batteries, recent efforts to develop portable fuel cells are summarized by the kind of fuels they use. Direct liquid fuel cells, polymer electrolyte membrane fuel cells, and solid oxide fuel cells are discussed in this chapter.

Keywords

Portable devices Battery Power density Direct methanol fuel cells Direct borohydride fuel cells  Polymer electrolyte fuel cells Solid oxide fuel cells Thin film technology Micro-tubular cells 

References

  1. 1.
    Thampan T, Shah D, Cook C, Novoa J, Shah S (2014) Development and evaluation of portable and wearable fuel cells for soldier use. J Power Sources 259:276–281. doi: 10.1016/j.jpowsour.2014.02.099 CrossRefGoogle Scholar
  2. 2.
    Aricò AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Electrocatalysis of direct methanol fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheims, pp 1–78Google Scholar
  3. 3.
    Baglio V, Di Blasi A, Modica E, Creti P, Antonucci V, Arico A (2006) Electrochemical analysis of direct methanol fuel cells for low temperature operation. Int J Electrochem Sci 1:71–79Google Scholar
  4. 4.
    Li X, Faghri A (2013) Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J Power Sources 226:223–240. doi: 10.1016/j.jpowsour.2012.10.061 CrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    de Leon CP, Walsh FC, Pletcher D, Browning DJ, Lakeman JB (2006) Direct borohydride fuel cells. J Power Sources 155(2):172–181. doi: 10.1016/j.jpowsour.2006.01.011 CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
    http://www.beupp.com/store/cart. Accessed 9 Aug 2015
  13. 13.
    Sá S, Silva H, Brandão L, Sousa JM, Mendes A (2010) Catalysts for methanol steam reforming—a review. Appl Catal B 99(1–2):43–57. doi: 10.1016/j.apcatb.2010.06.015 CrossRefGoogle Scholar
  14. 14.
    Grew KN, Brownlee ZB, Shukla KC, Chu D (2012) Assessment of Alane as a hydrogen storage media for portable fuel cell power sources. J Power Sources 217:417–430. doi: 10.1016/j.jpowsour.2012.06.007 CrossRefGoogle Scholar
  15. 15.
    Thampan T, Shah D, Cook C, Shah S, Atwater T (2015) Development and user evaluation of an AlH3 wearable power system (WPS). ECS Trans 65(1):205–217CrossRefGoogle Scholar
  16. 16.
    Jankowski AF, Hayes JP, Graff RT, Morse JD (2002) Micro-fabricated thin-film fuel cells for portable power requirements. Mat Res Soc Symp Proc 730, V4.2.1Google Scholar
  17. 17.
    Baertsch CD, Jensen KF, Hertz JL, Tuller HL, Vengallatore ST, Spearing SM, Schmidt MA (2004) Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell. J Mater Res 19(9):2604–2615CrossRefGoogle Scholar
  18. 18.
    Evans A, Bieberle-Hutter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194(1):119–129. doi: 10.1016/j.jpowsour.2009.03.048 CrossRefGoogle Scholar
  19. 19.
    Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz FB (2007) High-performance ultrathin solid oxide fuel cells for low-temperature operation. J Electrochem Soc 154(1):B20–B24CrossRefGoogle Scholar
  20. 20.
    Tsuchiya M, Lai B-K, Ramanathan S (2011) Scalable nanostructured membranes for solid-oxide fuel cells. Nat Nano 6(5):282–286. http://www.nature.com/nnano/journal/v6/n5/abs/nnano.2011.43.html#supplementary-information
  21. 21.
    Kerman K, Ramanathan S (2014) Complex oxide nanomembranes for energy conversion and storage: a review. J Mater Res 29(03):320–337CrossRefGoogle Scholar
  22. 22.
    Garbayo I, Pla D, Morata A, Fonseca L, Sabate N, Tarancon A (2014) Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures. Energy Environ Sci 7(11):3617–3629. doi: 10.1039/c4ee00748d CrossRefGoogle Scholar
  23. 23.
    An J, Kim Y-B, Park J, Gür TM, Prinz FB (2013) Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm2 at 450 °C. Nano Lett 13(9):4551–4555CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Schaevitz SB (2012) Powering the wireless world with MEMS. In: Proceedings of SPIE 8248, micromachining and microfabrication process technology XVII, p 824802Google Scholar
  26. 26.
    Reuber S, Pönicke A, Wunderlich C, Michaelis A (2013) Eneramic power generator—a reliable and cycleable 100 W SOFC-system. ECS Trans 57(1):161–169CrossRefGoogle Scholar
  27. 27.
    Howe KS, Thompso GJ, Kendall K (2011) Micro-tubular solid oxide fuel cells and stacks. J Power Sources 196(4):1677–1686CrossRefGoogle Scholar
  28. 28.
    Kendall K (2010) Progress in microtubular solid oxide fuel cells. Int J Appl Ceram Technol 7(1):1–9MathSciNetCrossRefGoogle Scholar
  29. 29.
    Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2009) Impact of anode microstructure on solid oxide fuel cells. Science 325(5942):852–855. doi: 10.1126/science.1176404 CrossRefGoogle Scholar
  30. 30.
    Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2008) New stack design of micro-tubular SOFCs for portable power sources. Fuel Cells 8(6):381–384. doi: 10.1002/fuce.200800047 CrossRefGoogle Scholar
  31. 31.
    Funahashi Y, Shimamori T, Suzuki T, Fujishiro Y, Awano M (2007) Fabrication and characterization of components for cube shaped micro tubular SOFC bundle. J Power Sources 163(2):731–736CrossRefGoogle Scholar
  32. 32.
    Sumi H, Yamaguchi T, Hamamoto K, Suzuki T, Fujishiro Y (2013) Development of microtubular SOFCs for portable power sources. ECS Trans 57(1):133–140. doi: 10.1149/05701.0133ecst CrossRefGoogle Scholar
  33. 33.
    Suzuki T, Yamaguchi T, Hamamoto K, Fujishiro Y, Awano M, Sammes N (2011) A functional layer for direct use of hydrocarbon fuel in low temperature solid-oxide fuel cells. Energy Environ Sci 4(3):940–943CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.SiEnergy Systems, LLCCambridgeUSA
  2. 2.Kyushu UniversityFukuokaJapan

Personalised recommendations