Skip to main content

Future Perspectives

  • Chapter
  • First Online:
  • 3852 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter describes future perspectives of the hydrogen safety achieved by combination of understanding hydrogen embrittlement (HE), hydrogen gas safety management, and hydrogen in practice. New materials having lower cost and higher resistance to HE and appropriate design methods in consideration for HE are introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NASA (1997) Safety standard for hydrogen and hydrogen systems. Washington, D.C: NSS 1740.16

    Google Scholar 

  2. Matsunaga H, Yoshikawa M, Kondo R, Yamabe J, Matsuoka S (2015) Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int J Hydrogen Energy 40:5739–5748

    Article  Google Scholar 

  3. Matsuoka S, Tsutsumi N, Murakami Y (2008) Effects of hydrogen on fatigue crack growth and stretch zone of 0.08 Mass% low carbon steel pipe. Trans JSME A 74:1528–1537

    Article  Google Scholar 

  4. Tanaka H, Homma N, Matsuoka S, Murakami Y (2007) Effect of hydrogen and frequency on fatigue behavior of SCM435 steel for storage cylinder of hydrogen station. Trans JSME A 73:1358–1365

    Article  Google Scholar 

  5. Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y (2008) Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int J Hydrogen Energy 33:2604–2619

    Article  Google Scholar 

  6. Murakami Y, Kanezaki T, Mine Y, Matsuoka S (2008) Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall Mater Trans A 39:1327–1339

    Article  Google Scholar 

  7. Yoshikawa M, Matsuo T, Tsutsumi N, Matsunaga H, Matsuoka S (2014) Effects of hydrogen gas pressure and test frequency on fatigue crack growth properties of low carbon steel in 0.1–9 0 MPa hydrogen gas. Trans JSME A 80

    Google Scholar 

  8. Matsuo T, Matsuoka S, Murakami Y (2010) Fatigue crack growth properties of quenched and tempered Cr-Mo steel in 0.7 MPa hydrogen gas. In: Proceedings of the 18th European conference on fracture (ECF18)

    Google Scholar 

  9. Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J. Press Vess Technol ASME 183–011401:1–13

    Google Scholar 

  10. Miyamoto T, Matsuo T, Kobayashi N, Mukaie Y, Matsuoka S (2012) Characteristics of fatigue life and fatigue crack growth of SCM435 steel in high-pressure hydrogen gas. Trans Jpn Soc Mech Eng A 78:531–546

    Article  Google Scholar 

  11. Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solid 37:317–350

    Article  Google Scholar 

  12. Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity: a mechanism for hydrogen-related fracture. Mater Sci Eng A 176:191–202

    Article  Google Scholar 

  13. Robertson IM, Birnbaum HK (1986) An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall 34:353–366

    Article  Google Scholar 

  14. Morlet JG, Johnson HH, Triano AR (1958) A new concept of hydrogen embrittlement in steel. J Iron Steel Inst 189–1:37–41

    Google Scholar 

  15. Troiano AR (1960) The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans ASM 52:54–80

    Google Scholar 

  16. Oriani RA, Josephic H (1974) Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall 22:1065–1074

    Article  Google Scholar 

  17. Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A New mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162

    Article  Google Scholar 

  18. Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61:6153–6170

    Article  Google Scholar 

  19. Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728

    Article  Google Scholar 

  20. Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, USA, July 20–24 ASME, New York

    Google Scholar 

  21. Hirayama T, Ogirima (1970) Influence of chemical composition on martensitic transformation in Fe–Cr–Ni stainless steel. J Jpn Inst Met Mater 34:507–510

    Google Scholar 

  22. Sanga M, Yukawa N, Ishikawa T (2000) Influence of chemical composition on deformation-induced martensitic transformation in austenitic stainless steel. J Jpn Soc Technol Plast 41:64–68

    Google Scholar 

  23. Yamada T, Kobayashi H (2012) J High Press. Gas Safety Inst Jpn 49:885–893

    Google Scholar 

  24. Hirayama T, Ogirima M (1970) Influence of martensitic transformation and chemical composition on mechanical properties of Fe-Cr-Ni stainless steel. J Jpn Inst Met Mater 34:511–516

    Google Scholar 

  25. Oshima T, Habara Y, Kuroda K (2007) Effects of alloying elements on mechanical properties and deformation-induced martensite transformation in Cr-Mn-Ni austenitic stainless steels (transformations and microstructures). Tetsu- to- Hagane 93:544–551

    Article  Google Scholar 

  26. Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S (2013) SSRT and fatigue crack growth properties of two types of high strength austenitic stainless steels in high pressure hydrogen gas. Trans JSME A 79:1726–1740

    Article  Google Scholar 

  27. ANSI/CSA, CHMC 1-2014 (2014) Test method for evaluating material compatibility in compressed hydrogen applicationsPhase IMetals. Mississauga, In: Canadian Standards Association

    Google Scholar 

  28. San Marchi C, Somerday BP, Nibur KA (2014) Development of methods for evaluating hydrogen compatibility and suitability. Int J Hydrogen Energy 39:20434–20439

    Article  Google Scholar 

  29. Mizobe K, Shiraishi Y, Kubota M, Kondo Y (2011) Effect of hydrogen on fretting fatigue strength of SUS304 and SUS316L austenitic stainless steels. In: Proceedings. ICM&P2011, Corvallis, Oregon, USA: ICMP2011-51138

    Google Scholar 

  30. Kubota M, Tanaka Y, Kondo Y (2007) Fretting fatigue properties of SCM435H and SUH660 in hydrogen gas environment. Trans JSME A 73:1382–1387

    Article  Google Scholar 

  31. Kubota M, Nishimura T, Kondo Y (2010) Effect of hydrogen concentration on fretting fatigue strength. J Solid Mech Mater Eng 4:816–829

    Article  Google Scholar 

  32. Komoda R, Kubota M, Furtado J (2015) Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen. Int J Hydrogen Energy 40:16868–16877

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Yamabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yamabe, J. (2016). Future Perspectives. In: Sasaki, K., Li, HW., Hayashi, A., Yamabe, J., Ogura, T., Lyth, S. (eds) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56042-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56042-5_33

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56040-1

  • Online ISBN: 978-4-431-56042-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics