Advertisement

Future Perspectives

  • Junichiro YamabeEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter describes future perspectives of the hydrogen safety achieved by combination of understanding hydrogen embrittlement (HE), hydrogen gas safety management, and hydrogen in practice. New materials having lower cost and higher resistance to HE and appropriate design methods in consideration for HE are introduced.

Keywords

Hydrogen embrittlement Safety Strength design Fatigue Fretting fatigue Steel Hydrogen safety 

References

  1. 1.
    NASA (1997) Safety standard for hydrogen and hydrogen systems. Washington, D.C: NSS 1740.16Google Scholar
  2. 2.
    Matsunaga H, Yoshikawa M, Kondo R, Yamabe J, Matsuoka S (2015) Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int J Hydrogen Energy 40:5739–5748CrossRefGoogle Scholar
  3. 3.
    Matsuoka S, Tsutsumi N, Murakami Y (2008) Effects of hydrogen on fatigue crack growth and stretch zone of 0.08 Mass% low carbon steel pipe. Trans JSME A 74:1528–1537CrossRefGoogle Scholar
  4. 4.
    Tanaka H, Homma N, Matsuoka S, Murakami Y (2007) Effect of hydrogen and frequency on fatigue behavior of SCM435 steel for storage cylinder of hydrogen station. Trans JSME A 73:1358–1365CrossRefGoogle Scholar
  5. 5.
    Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y (2008) Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int J Hydrogen Energy 33:2604–2619CrossRefGoogle Scholar
  6. 6.
    Murakami Y, Kanezaki T, Mine Y, Matsuoka S (2008) Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall Mater Trans A 39:1327–1339CrossRefGoogle Scholar
  7. 7.
    Yoshikawa M, Matsuo T, Tsutsumi N, Matsunaga H, Matsuoka S (2014) Effects of hydrogen gas pressure and test frequency on fatigue crack growth properties of low carbon steel in 0.1–9 0 MPa hydrogen gas. Trans JSME A 80Google Scholar
  8. 8.
    Matsuo T, Matsuoka S, Murakami Y (2010) Fatigue crack growth properties of quenched and tempered Cr-Mo steel in 0.7 MPa hydrogen gas. In: Proceedings of the 18th European conference on fracture (ECF18)Google Scholar
  9. 9.
    Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J. Press Vess Technol ASME 183–011401:1–13Google Scholar
  10. 10.
    Miyamoto T, Matsuo T, Kobayashi N, Mukaie Y, Matsuoka S (2012) Characteristics of fatigue life and fatigue crack growth of SCM435 steel in high-pressure hydrogen gas. Trans Jpn Soc Mech Eng A 78:531–546CrossRefGoogle Scholar
  11. 11.
    Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solid 37:317–350CrossRefGoogle Scholar
  12. 12.
    Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity: a mechanism for hydrogen-related fracture. Mater Sci Eng A 176:191–202CrossRefGoogle Scholar
  13. 13.
    Robertson IM, Birnbaum HK (1986) An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall 34:353–366CrossRefGoogle Scholar
  14. 14.
    Morlet JG, Johnson HH, Triano AR (1958) A new concept of hydrogen embrittlement in steel. J Iron Steel Inst 189–1:37–41Google Scholar
  15. 15.
    Troiano AR (1960) The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans ASM 52:54–80Google Scholar
  16. 16.
    Oriani RA, Josephic H (1974) Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall 22:1065–1074CrossRefGoogle Scholar
  17. 17.
    Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A New mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162CrossRefGoogle Scholar
  18. 18.
    Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61:6153–6170CrossRefGoogle Scholar
  19. 19.
    Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728CrossRefGoogle Scholar
  20. 20.
    Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, USA, July 20–24 ASME, New YorkGoogle Scholar
  21. 21.
    Hirayama T, Ogirima (1970) Influence of chemical composition on martensitic transformation in Fe–Cr–Ni stainless steel. J Jpn Inst Met Mater 34:507–510Google Scholar
  22. 22.
    Sanga M, Yukawa N, Ishikawa T (2000) Influence of chemical composition on deformation-induced martensitic transformation in austenitic stainless steel. J Jpn Soc Technol Plast 41:64–68Google Scholar
  23. 23.
    Yamada T, Kobayashi H (2012) J High Press. Gas Safety Inst Jpn 49:885–893Google Scholar
  24. 24.
    Hirayama T, Ogirima M (1970) Influence of martensitic transformation and chemical composition on mechanical properties of Fe-Cr-Ni stainless steel. J Jpn Inst Met Mater 34:511–516Google Scholar
  25. 25.
    Oshima T, Habara Y, Kuroda K (2007) Effects of alloying elements on mechanical properties and deformation-induced martensite transformation in Cr-Mn-Ni austenitic stainless steels (transformations and microstructures). Tetsu- to- Hagane 93:544–551CrossRefGoogle Scholar
  26. 26.
    Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S (2013) SSRT and fatigue crack growth properties of two types of high strength austenitic stainless steels in high pressure hydrogen gas. Trans JSME A 79:1726–1740CrossRefGoogle Scholar
  27. 27.
    ANSI/CSA, CHMC 1-2014 (2014) Test method for evaluating material compatibility in compressed hydrogen applicationsPhase IMetals. Mississauga, In: Canadian Standards AssociationGoogle Scholar
  28. 28.
    San Marchi C, Somerday BP, Nibur KA (2014) Development of methods for evaluating hydrogen compatibility and suitability. Int J Hydrogen Energy 39:20434–20439CrossRefGoogle Scholar
  29. 29.
    Mizobe K, Shiraishi Y, Kubota M, Kondo Y (2011) Effect of hydrogen on fretting fatigue strength of SUS304 and SUS316L austenitic stainless steels. In: Proceedings. ICM&P2011, Corvallis, Oregon, USA: ICMP2011-51138Google Scholar
  30. 30.
    Kubota M, Tanaka Y, Kondo Y (2007) Fretting fatigue properties of SCM435H and SUH660 in hydrogen gas environment. Trans JSME A 73:1382–1387CrossRefGoogle Scholar
  31. 31.
    Kubota M, Nishimura T, Kondo Y (2010) Effect of hydrogen concentration on fretting fatigue strength. J Solid Mech Mater Eng 4:816–829CrossRefGoogle Scholar
  32. 32.
    Komoda R, Kubota M, Furtado J (2015) Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen. Int J Hydrogen Energy 40:16868–16877Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.International Research Center for Hydrogen EnergyKyushu UniversityFukuokaJapan

Personalised recommendations