Advertisement

Structural Design and Testing

  • Junichiro YamabeEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter describes various design methods of components in consideration for the detrimental effect of hydrogen. Based on the design method, fatigue life and leak before break assessments of Cr–Mo steel pressure vessels subjected to hydrogen-pressure cycling are performed.

Keywords

Safety factor multiplier method Design by rule Design by analysis Leak before break Fracture toughness Operation history Pressure vessel Hydrogen safety 

References

  1. 1.
    Murakami Y, Matsuoka S, Kondo Y, Nishimura S (2012) Mechanism of hydrogen embrittlement and guide for fatigue design. Yokendo, TokyoGoogle Scholar
  2. 2.
    Gangloff RP, Somerday BP (eds) (2012) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, CambridgeGoogle Scholar
  3. 3.
    ASME (2010) ASME boiler & pressure vessel code, section VIII. Alternate rules high pressure vessels, division 3. Article KD-10. Special requirements for vessels in high pressure gaseous hydrogen transport and storage service. American Society of Mechanical Engineers, New YorkGoogle Scholar
  4. 4.
    ANSI/CSA, CHMC 1-2014 (2014) Test method for evaluating material compatibility in compressed hydrogen applicationsPhase IMetals. Canadian Standards Association, Mississauga, ONGoogle Scholar
  5. 5.
    San Marchi C, Somerday BP, Nibur KA (2014) Development of methods for evaluating hydrogen compatibility and suitability. Int J Hydrogen Energy 39:20434–20439CrossRefGoogle Scholar
  6. 6.
    Kobayashi H (2008) Safety factor in mechanical engineering field. J Jpn Landslide Soc 44:326–329Google Scholar
  7. 7.
    JSA. JIS B 8265 (2003) Construction of pressure vessel: general principles. Japanese Standards Association, TokyoGoogle Scholar
  8. 8.
    JSA. JIS B 8267 (2008) Construction of pressure vessel. Japanese Standards Association, TokyoGoogle Scholar
  9. 9.
    ASME (2001) ASME boiler & pressure vessel code, section VIII. Rules for the construction of pressure vessels. Division 1. American Society of Mechanical Engineers, New YorkGoogle Scholar
  10. 10.
    JSA (2003) JIS B 8266. Alternative standard for construction of pressure vessels. Japanese Standards Association, TokyoGoogle Scholar
  11. 11.
    ASME (2007) ASME boiler & pressure vessel code, section VIII. Construction of pressure vessels, division 2. American Society of Mechanical Engineers, New YorkGoogle Scholar
  12. 12.
    UNM. EN 13445 (2004) Unfired Pressure Vessels; Courbevoie: Union de Normalisation de la MécaniqueGoogle Scholar
  13. 13.
    KHK. KHKS 0220 (2010) KHK standard for pressure equipment containing ultrahigh pressure gas. High Pressure Gas Safety Institute of Japan, TokyoGoogle Scholar
  14. 14.
    Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728CrossRefGoogle Scholar
  15. 15.
    Matsunaga H, Yoshikawa M, Itoga H, Yamabe J, Hamada S, Matsuoka S (2014) Tensile- and fatigue-properties of low alloy steel JIS-435 and carbon steel JIS-SM490B in 115 MPa hydrogen gas (PVP2014-28511). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, New York, USA, 20–24 July 2014Google Scholar
  16. 16.
    Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr–Mo steel pressure vessels subjected to gaseous hydrogen. J Press Vess Technol ASME 183–011401:1–13Google Scholar
  17. 17.
    Miyamoto T, Matsuo T, Kobayashi N, Mukaie Y, Matsuoka S (2012) Characteristics of fatigue life and fatigue crack growth of SCM435 steel in high-pressure hydrogen gas. Trans JSME A 78:531–546CrossRefGoogle Scholar
  18. 18.
    Takeuchi E, Furuya Y, Hirakawa H, Matsuo T, Matsuoka S (2013) Effect of hydrogen on fatigue crack growth properties of SCM435 steel used for storage cylinder in hydrogen stations. Trans JSME A 79:1030–1040CrossRefGoogle Scholar
  19. 19.
    Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference. American Society of Mechanical Engineers, Anaheim, California, New York, USA, 20–24 July 2014Google Scholar
  20. 20.
    Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.International Research Center for Hydrogen EnergyKyushu UniversityFukuokaJapan

Personalised recommendations