Skip to main content

Effect of Hydrogen on the Fretting Fatigue Properties of Metals

  • Chapter
  • First Online:
Hydrogen Energy Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 3862 Accesses

Abstract

This chapter describes fretting fatigue of austenitic stainless steels in presence of hydrogen. The fretting fatigue strength is degraded by hydrogen and its mechanisms are revealed based on surface analysis and observations of fretting fatigue cracks and microstructures changed due to adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kubota M, Komoda R (2015) Fretting fatigue in hydrogen environment. Tribologist 60:651–657

    Google Scholar 

  2. Izumi N, Mimuro N, Morita T, Sugimura J (2009) Fretting wear tests of steels in hydrogen gas environment. Tribol Online 4:109–114

    Article  Google Scholar 

  3. Izumi N, Morita T, Sugimura J (2011) Fretting wear of a bearing steel in hydrogen gas environment containing a trace of water. Tribol Online 6:148–154

    Article  Google Scholar 

  4. Johnson WH (1874) On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc R Soc Lon 23:168–179

    Article  Google Scholar 

  5. Kondo Y, Bodai M (1997) Study on fretting fatigue crack initiation mechanism based on local stress at contact edge. Trans JSME A 63:669–676

    Article  Google Scholar 

  6. Kubota M, Nishimura T, Kondo Y (2010) Effect of hydrogen concentration on fretting fatigue strength. J Solid Mech Mater Eng 4:1–14

    Article  Google Scholar 

  7. Nagata K, Fukakura J (1992) Effect of contact materials on fretting fatigue strength of 3.5Ni–Cr–Mo–V rotor steel and life-prediction method. Trans JSME A 58:1561–1568

    Article  Google Scholar 

  8. Nishioka K, Hirakawa K (1971) Fundamental investigation of fretting fatigue (part 6, effects of contact pressure and hardness). Trans JSME 3:1051–1058

    Article  Google Scholar 

  9. Nishioka K, Hirakawa K (1969) Fundamental investigation of fretting fatigue (part 2, fretting fatigue testing machine and some test results). Bull JSME 12:180–187

    Article  Google Scholar 

  10. Hirakawa K, Toyama K, Kubota M (1998) Analysis and prevention of failure in railway axles. Int J Fat 20:135–144

    Article  Google Scholar 

  11. Hayakawa M, Takeuchi M, Matsuoka S (2014) Hydrogen fatigue-resisting carbon steels. Procedia Mater Sci 3:2011–2015

    Article  Google Scholar 

  12. Macadre A, Artamonov M, Matsuoka S, Furtado J (2011) Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni–Cr–Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station. Eng Fract Mech 782:3196–3211

    Article  Google Scholar 

  13. Fassina P, Brunella MF, Lazzari L, Reb G, Vergani L, Sciuccati A (2013) Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels. Eng Fract Mech 103:10–25

    Article  Google Scholar 

  14. Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61:6153–6170

    Article  Google Scholar 

  15. Kubota M, Kawakami K (2014) High-cycle fatigue properties of carbon steel and work-hardened oxygen free copper in high pressure hydrogen. Adv Mater Res 891–892:575–580

    Article  Google Scholar 

  16. Murakami Y, Kanezaki T, Mine Y (2010) Hydrogen effect against hydrogen embrittlement. Metall Mater Trans A 41:2548–2562

    Article  Google Scholar 

  17. Furtado J, Komoda R, Kubota M (2013) Fretting fatigue properties under the effect of hydrogen and the mechanisms that cause the reduction in fretting fatigue strength. In: Proceedings of ICF13, Beijing, China, S16–003

    Google Scholar 

  18. Kubota M, Tanaka Y, Kuwada K, Kondo Y (2010) Mechanism of reduction of fretting fatigue limit in hydrogen gas in SUS304. J Soc Mater Sci Jpn 59:439–446

    Article  Google Scholar 

  19. Endo K, Goto H (1976) Initiation and propagation of fretting fatigue cracks. Wear 38:311–324

    Article  Google Scholar 

  20. Nishioka K, Hirakawa K (1969) Fundamental investigation of fretting fatigue (part 3, some phenomena and mechanisms of surface cracks). Bull JSME 12:397–407

    Article  Google Scholar 

  21. Iwabuchi A, Kayaba T, Kato K (1983) Effect of atmospheric pressure of friction and wear of 0.45 %C steel in fretting. Wear 91:289–305

    Article  Google Scholar 

  22. Komoda R, Yoshigai N, Kubota M, Furtado J (2014) Reduction in fretting fatigue strength of austenitic stainless steels due to internal hydrogen. Adv Mater Res 891–892:891–896

    Article  Google Scholar 

  23. Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solid 37:317–350

    Article  Google Scholar 

  24. Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity: a mechanism for hydrogen-related fracture. Mater Sci Eng A 176:191–202

    Article  Google Scholar 

  25. Kubota M, Shiraishi Y, Komoda R, Kondo Y, Furtado J (2012) Considering the mechanisms causing reduction of fretting fatigue strength by hydrogen. In: Proceedings of ECF19, Kazan, Russia, p 281

    Google Scholar 

  26. Nelson HG, Stein JE (1973) Gas-phase hydrogen permeation through alpha iron, 4130 steel, and 304 stainless steel from less than 100 C to near 600 C. NASA TN D-7265

    Google Scholar 

  27. San Marchi C, Somerday BP, Tang X, Schiroky GH (2008) Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels. Int J Hydrogen Energy 33:889–904

    Article  Google Scholar 

  28. Komoda R, Kubota M, Furtado J (2015) Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen. Int J Hydrogen Energy 40:16868–16877

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Kubota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kubota, M. (2016). Effect of Hydrogen on the Fretting Fatigue Properties of Metals. In: Sasaki, K., Li, HW., Hayashi, A., Yamabe, J., Ogura, T., Lyth, S. (eds) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56042-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56042-5_31

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56040-1

  • Online ISBN: 978-4-431-56042-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics