Skip to main content

Effect of Hydrogen on Fatigue Properties of Metals

  • Chapter
  • First Online:
Hydrogen Energy Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 3871 Accesses

Abstract

This chapter describes the effects of hydrogen pressure and test frequency on fatigue life and fatigue crack growth (FCG) behaviors of carbon and low-alloy steels. FCG behaviors of austenitic stainless steels and aluminum alloy in high-pressure gaseous hydrogen are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsunaga H, Yoshikawa M, Kondo R, Yamabe J, Matsuoka S (2015) Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int J Hydrogen Energy 40:5739–5748

    Article  Google Scholar 

  2. Yamada T, Kobayashi H (2012) J High Press Gas Safety Inst Jpn 49:885–893

    Google Scholar 

  3. Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Ogawa Y, Matsunaga H, Yoshikawa M, Yamabe J, Matsuoka S (2015) Effect of high-pressure hydrogen gas environment on fatigue life characteristics of low alloy steel SCM435 and carbon steel SM490B. In: Proceedings of the eighth Japan conference on structural safety and reliability

    Google Scholar 

  5. Murakami Y (2002) Metal fatigue: Effects of small defects and nonmetallic inclusions. Elsevier Science

    Google Scholar 

  6. NASA (1997) Safety standard for hydrogen and hydrogen systems. Washington, DC, NSS 1740.16

    Google Scholar 

  7. Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. Trans ASME Ser D J Basic Eng 85:528–534

    Article  Google Scholar 

  8. Yoshikawa M, Matsuo T, Tsutsumi N, Matsunaga H, Matsuoka S (2014) Effects of hydrogen gas pressure and test frequency on fatigue crack growth properties of low carbon steel in 0.1–90 MPa hydrogen gas. Trans JSME A 80

    Google Scholar 

  9. Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J Press Vess Technol ASME 183–011401:1–13

    Google Scholar 

  10. Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference, Anaheim, California, USA, July 20–24 2014 ASME, New York, NY

    Google Scholar 

  11. Itoga H, Watanabe S, Fukushima Y, Matsuoka S, Murakami Y (2013) Fatigue crack growth of aluminum alloy A6061-T6 in high pressure hydrogen gas and failure analysis on 35 MPa compressed hydrogen tanks VH3 for fuel cell vehicles. Trans JSME A78:442–457

    Google Scholar 

  12. Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61:6153–6170

    Article  Google Scholar 

  13. Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728

    Article  Google Scholar 

  14. Macadre A, Artamonov M, Matsuoka S, Furtado J (2011) Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni–Cr–Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station. Eng Fract Mech 782:3196–3211

    Article  Google Scholar 

  15. Matsuoka S, Tanaka H, Homma N, Murakami Y (2011) Influence of hydrogen and frequency on fatigue crack growth behavior of Cr–Mo steel. Int J Fract 168:101–112

    Article  Google Scholar 

  16. Matsuo T, Matsuoka S, Murakami Y (2010) Fatigue crack growth properties of quenched and tempered Cr–Mo steel in 0.7 MPa hydrogen gas. In: Proceedings of the 18th European conference on fracture (ECF18)

    Google Scholar 

  17. Murakami Y, Kanezaki T, Mine Y, Matsuoka S (2008) Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall Mater Trans A 39:1327–1339

    Article  Google Scholar 

  18. Murakami Y, Matsuoka S, Kondo Y, Nishimura S (2012) Mechanism of hydrogen embrittlement and guide for fatigue design. Yokendo, Tokyo

    Google Scholar 

  19. Kikukawa M, Jono M, Tanaka K, Takatani M (1976) Measurement of fatigue crack propagation and crack closure at low stress intensity level by unloading elastic compliance method. J Soc Mater Sci Jpn 25:899–903

    Article  Google Scholar 

  20. Orita A, Matsuo T, Matsuoka S, Murakami Y (2013) Tensile and fatigue crack growth properties of high strength stainless steel with high resistance to hydrogen embrittlement in 100 MPa hydrogen gas. In: Proceedings of the 19th European conference on fracture (ECF19)

    Google Scholar 

  21. Oshima T, Habara Y, Kuroda K (2007) Effects of alloying elements on mechanical properties and deformation-induced martensite transformation in Cr-Mn-Ni austenitic stainless steels (transformations and microstructures). Tetsu- to- Hagane 93:544–551

    Article  Google Scholar 

  22. Matsuoka S, Tsutsumi N, Murakami Y (2008) Effects of hydrogen on fatigue crack growth and stretch zone of 0.08 mass % C low carbon steel pipe. Trans JSME A 74:1528–1537

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Matsunaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Matsunaga, H. (2016). Effect of Hydrogen on Fatigue Properties of Metals. In: Sasaki, K., Li, HW., Hayashi, A., Yamabe, J., Ogura, T., Lyth, S. (eds) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56042-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56042-5_30

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56040-1

  • Online ISBN: 978-4-431-56042-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics