Advertisement

Effect of Hydrogen on Fatigue Properties of Metals

  • Hisao MatsunagaEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter describes the effects of hydrogen pressure and test frequency on fatigue life and fatigue crack growth (FCG) behaviors of carbon and low-alloy steels. FCG behaviors of austenitic stainless steels and aluminum alloy in high-pressure gaseous hydrogen are also introduced.

Keywords

Hydrogen Fatigue life property Fatigue crack growth property Non-propagating crack Slip deformation Striation Steel Aluminum Hydrogen safety 

References

  1. 1.
    Matsunaga H, Yoshikawa M, Kondo R, Yamabe J, Matsuoka S (2015) Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int J Hydrogen Energy 40:5739–5748CrossRefGoogle Scholar
  2. 2.
    Yamada T, Kobayashi H (2012) J High Press Gas Safety Inst Jpn 49:885–893Google Scholar
  3. 3.
    Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Ogawa Y, Matsunaga H, Yoshikawa M, Yamabe J, Matsuoka S (2015) Effect of high-pressure hydrogen gas environment on fatigue life characteristics of low alloy steel SCM435 and carbon steel SM490B. In: Proceedings of the eighth Japan conference on structural safety and reliabilityGoogle Scholar
  5. 5.
    Murakami Y (2002) Metal fatigue: Effects of small defects and nonmetallic inclusions. Elsevier ScienceGoogle Scholar
  6. 6.
    NASA (1997) Safety standard for hydrogen and hydrogen systems. Washington, DC, NSS 1740.16Google Scholar
  7. 7.
    Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. Trans ASME Ser D J Basic Eng 85:528–534CrossRefGoogle Scholar
  8. 8.
    Yoshikawa M, Matsuo T, Tsutsumi N, Matsunaga H, Matsuoka S (2014) Effects of hydrogen gas pressure and test frequency on fatigue crack growth properties of low carbon steel in 0.1–90 MPa hydrogen gas. Trans JSME A 80Google Scholar
  9. 9.
    Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J Press Vess Technol ASME 183–011401:1–13Google Scholar
  10. 10.
    Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference, Anaheim, California, USA, July 20–24 2014 ASME, New York, NYGoogle Scholar
  11. 11.
    Itoga H, Watanabe S, Fukushima Y, Matsuoka S, Murakami Y (2013) Fatigue crack growth of aluminum alloy A6061-T6 in high pressure hydrogen gas and failure analysis on 35 MPa compressed hydrogen tanks VH3 for fuel cell vehicles. Trans JSME A78:442–457Google Scholar
  12. 12.
    Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61:6153–6170CrossRefGoogle Scholar
  13. 13.
    Yamabe J, Matsunaga H, Furuya Y, Hamada S, Itoga H, Yoshikawa M, Takeuchi E, Matsuoka S (2014) Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014. Int J Hydrogen Energy 40:719–728CrossRefGoogle Scholar
  14. 14.
    Macadre A, Artamonov M, Matsuoka S, Furtado J (2011) Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni–Cr–Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station. Eng Fract Mech 782:3196–3211CrossRefGoogle Scholar
  15. 15.
    Matsuoka S, Tanaka H, Homma N, Murakami Y (2011) Influence of hydrogen and frequency on fatigue crack growth behavior of Cr–Mo steel. Int J Fract 168:101–112CrossRefGoogle Scholar
  16. 16.
    Matsuo T, Matsuoka S, Murakami Y (2010) Fatigue crack growth properties of quenched and tempered Cr–Mo steel in 0.7 MPa hydrogen gas. In: Proceedings of the 18th European conference on fracture (ECF18)Google Scholar
  17. 17.
    Murakami Y, Kanezaki T, Mine Y, Matsuoka S (2008) Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall Mater Trans A 39:1327–1339CrossRefGoogle Scholar
  18. 18.
    Murakami Y, Matsuoka S, Kondo Y, Nishimura S (2012) Mechanism of hydrogen embrittlement and guide for fatigue design. Yokendo, TokyoGoogle Scholar
  19. 19.
    Kikukawa M, Jono M, Tanaka K, Takatani M (1976) Measurement of fatigue crack propagation and crack closure at low stress intensity level by unloading elastic compliance method. J Soc Mater Sci Jpn 25:899–903CrossRefGoogle Scholar
  20. 20.
    Orita A, Matsuo T, Matsuoka S, Murakami Y (2013) Tensile and fatigue crack growth properties of high strength stainless steel with high resistance to hydrogen embrittlement in 100 MPa hydrogen gas. In: Proceedings of the 19th European conference on fracture (ECF19)Google Scholar
  21. 21.
    Oshima T, Habara Y, Kuroda K (2007) Effects of alloying elements on mechanical properties and deformation-induced martensite transformation in Cr-Mn-Ni austenitic stainless steels (transformations and microstructures). Tetsu- to- Hagane 93:544–551CrossRefGoogle Scholar
  22. 22.
    Matsuoka S, Tsutsumi N, Murakami Y (2008) Effects of hydrogen on fatigue crack growth and stretch zone of 0.08 mass % C low carbon steel pipe. Trans JSME A 74:1528–1537CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations