Hydrogen Safety Fundamentals

  • Junichiro YamabeEmail author
  • Saburo Matsuoka
Part of the Green Energy and Technology book series (GREEN)


This chapter describes an overview of hydrogen safety related to hydrogen embrittlement (HE), hydrogen gas safety management, and hydrogen safety best practice. Blister fracture of rubbers caused by decompression of high-pressure gaseous hydrogen is also introduced.


Hydrogen embrittlement Blistering Hydrogen diffusion Steel Aluminum Rubber Hydrogen safety 


  1. 1.
    Murakami Y, Matsuoka S, Kondo Y, Nishimura S (2012) Mechanism of hydrogen embrittlement and guide for fatigue design. Yokendo, TokyoGoogle Scholar
  2. 2.
    Gangloff RP, Somerday BP (eds) (2012) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, CambridgeGoogle Scholar
  3. 3.
    Nagumo M (2008) Fundamentals of hydrogen embrittlement. Uchida Rokakuho, TokyoGoogle Scholar
  4. 4.
    Gangloff RP (2003) Hydrogen assisted cracking of high strength alloys. In: Milne I (ed) Comprehensive structural integrity. Elsevier Science, New York, pp 31–101CrossRefGoogle Scholar
  5. 5.
    Suresh S, Ritchie RO (1982) Mechanistic dissimilarities between environmentally influenced fatigue-crack propagation at near-threshold and higher growth rates in lower strength steels. Mater Sci Technol 16:529–538Google Scholar
  6. 6.
    Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference, Anaheim, California, USA, July 20–24 2014, ASME, American Society of Mechanical Engineers, New YorkGoogle Scholar
  7. 7.
    Ogirima Hirayama T (1970) Influence of chemical composition on martensitic transformation in Fe-Cr-Ni stainless Steel. J Japan Inst Met Mater 34:507–510Google Scholar
  8. 8.
    Sanga M, Yukawa N, Ishikawa T (2000) Influence of chemical composition on deformation-induced martensitic transformation in austenitic stainless steel. J Jpn Soc Technol Plast 41:64–68Google Scholar
  9. 9.
    Yamada T, Kobayashi H (2012) Material selection used for hydrogen station. J High Press. Gas Safety Inst Jpn 49:885–893Google Scholar
  10. 10.
    NASA (1997) Safety standard for hydrogen and hydrogen systems. NSS 1740.16, Washington DCGoogle Scholar
  11. 11.
    Matsuoka S, Homma N, Tanaka H, Fukushima Y, Murakami Y (2006) Effect of hydrogen on tensile properties of 900-MPa-class JIS-SCM435 low-alloy-steel for use in storage cylinder of hydrogen station. J Jpn Inst Met Mater 70:1002–1011CrossRefGoogle Scholar
  12. 12.
    Thompson AW (1979) Ductile fracture topography: geometrical contributions and effects of hydrogen. Metall Trans A 10:727–731CrossRefGoogle Scholar
  13. 13.
    Matsunaga H, Yoshikawa M, Kondo R, Yamabe J, Matsuoka S (2015) Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int J Hydrogen Energy 40:5739–5748CrossRefGoogle Scholar
  14. 14.
    Matsuo T, Homma N, Matsuoka S, Murakami Y (2008) Effect of hydrogen and prestrain on tensile properties of carbon steel SGP (0.078 C–0.012 Si–0.35 Mn, mass %) for 0.1 MPa hydrogen pipelines. Trans JSME A 74:1164–1173CrossRefGoogle Scholar
  15. 15.
    Morlet JG, Johnson HH, Triano AR (1958) A new concept of hydrogen embrittlement in steel. J Iron Steel Inst 189–1:37–41Google Scholar
  16. 16.
    Troiano AR (1960) The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans ASM 52:54–80Google Scholar
  17. 17.
    Oriani RA, Josephic H (1974) Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall 22:1065–1074CrossRefGoogle Scholar
  18. 18.
    Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solids 37:317–350CrossRefGoogle Scholar
  19. 19.
    Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity: a mechanism for hydrogen-related fracture. Mater Sci Eng A 176:191–202CrossRefGoogle Scholar
  20. 20.
    Robertson IM, Birnbaum HK (1986) An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall 34:353–366CrossRefGoogle Scholar
  21. 21.
    Nagumo M, Nakamura M, Takai K (2001) Hydrogen thermal desoption relevant to delayed-fracture susceptibility of high-strength steels. Metall Mater Trans A 32:339–347CrossRefGoogle Scholar
  22. 22.
    Nagumo M, Uyama H, Yoshizawa M (2001) Accelerated failure in high strength steel by alternating hydrogen-charging potential. Scr Mater 44:947–952CrossRefGoogle Scholar
  23. 23.
    Nagumo M, Ishikawa T, Endoh T, Inoue Y (2003) Amophization associated with crack propagation in hydrogen-charged steel. Scr Mater 49:837–842CrossRefGoogle Scholar
  24. 24.
    Matsuo T, Yamabe J, Matsuoka S (2014) Effects of hydrogen on tensile properties and fracture surface morphologies of Type 316L stainless steel. Int J Hydrogen Energy 39:3542–3551CrossRefGoogle Scholar
  25. 25.
    Roger HC (1960) The tensile fracture of ductile metals. Trans ASME 218:498–506Google Scholar
  26. 26.
    Cox TB, Low JR Jr (1974) An investigation of the plastic fracture of AISI 4430 and 18 Ni-200 grade maraging steels. Metall Trans 5:1457–1470CrossRefGoogle Scholar
  27. 27.
    Matsuoka S, Tsutsumi N, Murakami Y (2008) Effects of hydrogen on fatigue crack growth and stretch zone of 0.08 Mass% low carbon steel pipe. Trans JSME A 74:1528–1537CrossRefGoogle Scholar
  28. 28.
    Tanaka H, Homma N, Matsuoka S, Murakami Y (2007) Effect of hydrogen and frequency on fatigue behavior of SCM435 steel for storage cylinder of hydrogen station. Trans JSME A 73:1358–1365CrossRefGoogle Scholar
  29. 29.
    Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162CrossRefGoogle Scholar
  30. 30.
    Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J Press Vess Technol ASME 183–011401:1–13Google Scholar
  31. 31.
    Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y (2008) Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int J Hydrogen Energy 33:2604–2619CrossRefGoogle Scholar
  32. 32.
    Murakami Y, Kanezaki T, Mine Y, Matsuoka S (2008) Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall Mater Trans A 39:1327–1339CrossRefGoogle Scholar
  33. 33.
    Novak P, Yuan R, Somerday BP, Sofronis P, Ritchie RO (2010) A statistical, physical-based micro-mechanical mode of hydrogen-induced intergranular fracture in steel. J Mech Phys Solids 58:206–226CrossRefGoogle Scholar
  34. 34.
    Itoga H, Watanabe S, Fukushima Y, Matsuoka S, Murakami Y (2013) Fatigue crack growth of aluminum alloy A6061-T6 in high pressure hydrogen gas and failure analysis on 35 MPa compressed hydrogen tanks VH3 for fuel cell vehicles. Trans JSME A 78:442–457CrossRefGoogle Scholar
  35. 35.
    Ohnishi T (1989) Hydrogen in pure aluminum and in aluminum alloys. J Jpn Inst Light Met. 39:235–251CrossRefGoogle Scholar
  36. 36.
    Wei RP, Simmons GW (1981) Resent progress in understanding environment assisted fatigue crack growth. Int J Fract 17:235–247CrossRefGoogle Scholar
  37. 37.
    Swansiger WA, Bastasz R (1979) Tritium and deuterium permeation in stainless steel: influence of thin oxide films. J Nucl Mater 85–6:335–339CrossRefGoogle Scholar
  38. 38.
    Hirth JP (1980) Effects of hydrogen on the properties of iron and steel. Metall Trans A 11:861–890CrossRefGoogle Scholar
  39. 39.
    Yamabe J, Awane T, Matsuoka S (2015) Investigation of hydrogen transport behavior of various low-alloy steels with high-pressure hydrogen gas. Int J Hydrogen Energy 40:11075–11086CrossRefGoogle Scholar
  40. 40.
    Yamabe J, Matsuoka S, Murakami Y (2013) Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment. Int J Hydrogen Energy 38:10141–10154CrossRefGoogle Scholar
  41. 41.
    Yamabe J, Matsuoka S, Murakami Y (2014) Development of high-performance hydrogen barrier coating for steels. In: Proceedings of SteelyHydrogen2014 conference, Ghent, Belgium, May 5–7 2014Google Scholar
  42. 42.
    Iijima Y, Hirano K (1975) Diffusion of hydrogen in metals. Bull Jpn Inst Met 14:599–620CrossRefGoogle Scholar
  43. 43.
    San Marchi C, Somerday BP (2012) Technical reference for hydrogen compatibility of materials. Sandia reportGoogle Scholar
  44. 44.
    Kiuchi K, McLellan RB (1983) The solubility and diffusivity of hydrogen in well-annealed and deformed iron. Acta Metall 31:961–984CrossRefGoogle Scholar
  45. 45.
    Hobson JD (1958) The diffusivity of hydrogen in steel at temperatures of −78 to 200 °C. J Iron Steel Inst 189:315–321Google Scholar
  46. 46.
    Coe FR, Moreton J (1966) Diffusion of hydrogen in low-alloy steel. J Iron Steel Inst 204:366–370Google Scholar
  47. 47.
    Yamakawa K, Minamino Y, Matsumoto K, Yonezawa S, Yoshizawa S (1980) Hydrogen absorbability of SCM steels and its effect on cracking behavior. J Soc Mater Sci Jpn 29:1101–1107CrossRefGoogle Scholar
  48. 48.
    Fujii T, Nomura K (1984) Temperature dependence of hydrogen diffusivity of 2 1/4Cr-1Mo steel. Tetsu-to-Hagane 70:104–111Google Scholar
  49. 49.
    Oriani RA (1970) The diffusion and trapping of hydrogen in steel. Acta Metall 18:147–157CrossRefGoogle Scholar
  50. 50.
    San Marchi C, Somerday BP, Robinson SL (2007) Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. Int J Hydrogen Energy 32:100–116CrossRefGoogle Scholar
  51. 51.
    Gibala R (1967) Hydrogen-dislocation interaction in iron. Trans Met Soc AIME 239:1574–1585Google Scholar
  52. 52.
    Takai K (2004) Hydrogen existing states in metals. Trans JSME A 70:1027–1035CrossRefGoogle Scholar
  53. 53.
    Choo WY, Lee JY (1982) Thermal analysis of trapped hydrogen in pure iron. Metall Trans A 13:135–140CrossRefGoogle Scholar
  54. 54.
    Takeuchi E, Furuya Y, Hirukawa Y, Matso T, Matsuoka S (2013) Effect of hydrogen on fatigue crack growth properties of SCM435 steel used for storage cylinder in hydrogen station. Trans JSME A 79:1030–1040CrossRefGoogle Scholar
  55. 55.
    Louthan MR Jr, Derrick RG (1975) Hydrogen transport in austenitic stainless steel. Corros Sci 15:565–577CrossRefGoogle Scholar
  56. 56.
    Sun XK, Xu J, Li YY (1989) Hydrogen permeation behaviour in austenitic stainless steels. Mater Sci Eng, A 114:179–187CrossRefGoogle Scholar
  57. 57.
    Perng T-P, Altstetter CJ (1986) Effects of deformation on hydrogen permeation in austenitic stainless steels. Acta Metall 34:1771–1787CrossRefGoogle Scholar
  58. 58.
    Young GA Jr, Scully JR (1998) The diffusivity and trapping of hydrogen in high purity aluminum. Acta Mater 46:6337–6349CrossRefGoogle Scholar
  59. 59.
    Scully JR, Young GA Jr, Smith SW (2012) Hydrogen embrittlement of aluminum and aluminum-based alloys. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies, vol 1. Woodhead Publishing Limited, Cambridge, pp 707–768CrossRefGoogle Scholar
  60. 60.
    Papp K, Kovacs-Csetenyi E (1981) Diffusion of hydrogen in high purity aluminum. Scr Metall 15:161–164CrossRefGoogle Scholar
  61. 61.
    Jia-He Ai, Lim MLC, Scully JR (2013) Effective hydrogen diffusion in aluminum alloy 5083-H131 as a function of orientation and degree of sensitization. Corrosion 69:1225–1239CrossRefGoogle Scholar
  62. 62.
    Briscoe BJ, Savvas T, Kelly CT (1994) Explosive decompression failure of rubber: a review of the origins of pneumatic stress induced rupture in elastomer. Rubber Chem Technol 67:384–416CrossRefGoogle Scholar
  63. 63.
    Gent AN, Tompkins DA (1969) Nucleation and growth of gas bubbles in elastomers. J Appl Phys 40:2520–2525CrossRefGoogle Scholar
  64. 64.
    Gent AN, Lindley PB (1958) Internal rupture of bonded rubber cylinders in tension. Proc R Soc LON Ser-A 249:195–205CrossRefGoogle Scholar
  65. 65.
    Zakaria S, Bricoe BJ (1990) Why rubber explodes. ChemTech 20:492–495Google Scholar
  66. 66.
    Briscoe BJ, Liatsis D (1992) Internal crack symmetry phenomena during gas-induced rupture of elastomers. Rubber Chem Technol 65:350–373CrossRefGoogle Scholar
  67. 67.
    Yamabe J, Nishimura S (2009) Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas. Int J Hydrogen Energy 34:1977–1989CrossRefGoogle Scholar
  68. 68.
    Yamabe J, Koga A, Nishimura S (2013) Failure behavior of rubber O-ring under cyclic exposure to high-pressure hydrogen gas. Eng Fail Anal 35:193–205CrossRefGoogle Scholar
  69. 69.
    Koga A, Uchida K, Yamabe J, Nishimura S (2011) Evaluation on high-pressure hydrogen decompression failure of rubber O-ring using design of experiments. Int J Automotive Eng 2:123–129Google Scholar
  70. 70.
    Yamabe J, Nishimura S (2012) Hydrogen-induced degradation of rubber seals. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies, vol 1. Woodhead Publishing Limited, Cambridge, pp 769–817CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.International Research Center for Hydrogen EnergyKyushu UniversityFukuokaJapan
  2. 2.Research Center for Hydrogen Industrial Use and Storage (HYDROEGNIUS)Kyushu UniversityFukuokaJapan

Personalised recommendations