Polymer Electrolyte Fuel Cells (PEFCs)

  • Akari HayashiEmail author
  • Masamichi Nishihara
  • Junko Matsuda
  • Kazunari Sasaki
Part of the Green Energy and Technology book series (GREEN)


This chapter describes operating principles of polymer electrolyte fuel cells. The fundamental components (electrolyte, electrode, and gas diffusion layer) are explained from the viewpoint of material science, followed by a description of cells and stack structures.


PEFC MEA Proton conductivity Nafion Pt Carbon FCV Hydrogen utilization 


  1. 1.
    Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  2. 2.
    Jiao K, Li X (2011) Water transport in polymer electrolyte membrane fuel cells. Prog Energy Combust Sci 37:221–291CrossRefGoogle Scholar
  3. 3.
    Grot W (2011) Fluorinated Ionomers, 2nd edn. William Andrew, WalthamGoogle Scholar
  4. 4.
    Zhang H, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41:2382–2394MathSciNetCrossRefGoogle Scholar
  5. 5.
    Vallejo E, Pourcelly G, Gavach C, Mercier R, Pineri M (1999) Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane. J Membr Sci 160:127–137CrossRefGoogle Scholar
  6. 6.
    Zaidi SMJ, Mikhailenko SD, Robertsonb GP, Guiver MD, Kaliaguine S (2000) Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J Membr Sci 173:17–34CrossRefGoogle Scholar
  7. 7.
    Dyck A, Fritsch D, Nunes SP (2002) Proton-conductive membranes of sulfonated polyphenylsulfone. J Appl Polym Sci 86:2820–2827CrossRefGoogle Scholar
  8. 8.
    Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE (2002) Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J Membr Sci 197:231–242CrossRefGoogle Scholar
  9. 9.
    Tanaka M, Koike M, Miyatake K, Watanabe M (2011) Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications. Polym Chem 2:99–106CrossRefGoogle Scholar
  10. 10.
    Nasef MM (2014) Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions. Chem Rev 114:12278–12329CrossRefGoogle Scholar
  11. 11.
    Elabd YA, Hickner MA (2011) Block copolymers for fuel cells. Macromolecules 44:1–11CrossRefGoogle Scholar
  12. 12.
    Zeis R (2015) Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein J Nanotechnol 6:68–83CrossRefGoogle Scholar
  13. 13.
    Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396CrossRefGoogle Scholar
  14. 14.
    Antolini E (2003) Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater Chem Phys 78:563–573CrossRefGoogle Scholar
  15. 15.
    Ehteshami SMM, Chan SH (2013) A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membrane fuel cells. Electrochim Acta 93:334–345CrossRefGoogle Scholar
  16. 16.
    Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115:3433–3467CrossRefGoogle Scholar
  17. 17.
    Zhang S, Yuan XZ, Hin JNC, Wang H, Friedrich KA, Schulze M (2009) A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Pow Sour 194:588–600CrossRefGoogle Scholar
  18. 18.
    Zhao X, Hayashi A, Noda Z, Sasaki K (2014) Evaluation of MEAs prepared by Pt/C electrocatalysts with improved durability through the heat treatment. ECS Trans 58:7–13CrossRefGoogle Scholar
  19. 19.
    Kocha SS (2012) Polymer electrolyte fuel cell degradation. Elsevier academic press, San DiegoGoogle Scholar
  20. 20.
    Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558CrossRefGoogle Scholar
  21. 21.
    Takabatake Y, Noda Z, Lyth SM, Hayashi A, Sasaki K (2014) Cycle durability of metal oxide supports for PEFC electrocatalysts. Int J Hydro Ener 39:5074–5082CrossRefGoogle Scholar
  22. 22.
    Arvay A, Yli-Rantala E, Liu CH, Peng XH, Koski P, Cindrella L, Kauranen P, Wilde PM, Kannan AM (2012) Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells—a review. J Pow Sour 213:317–337CrossRefGoogle Scholar
  23. 23.
    Park S, Lee JW, Popov BN (2012) A review of gas diffusion layer in PEM fuel cells: materials and designs. Int J Hydro Energy 37:5850–5865CrossRefGoogle Scholar
  24. 24.
    Antunes RA, Oliveira MCL, Ett G, Ett V (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance. J Pow Sour 196:2945–2961CrossRefGoogle Scholar
  25. 25.
    Netwall CJ, Gould BD, Rodgers JA, Nasello NJ, Swider-Lyons KE (2013) Decreasing contact resistance in proton-exchange membrane fuel cells with metal bipolar plates. J Pow Sour 227:137–144CrossRefGoogle Scholar
  26. 26.
    Kawai T (2015) Abstract: fuel cell vehicle development and initial market creation. FC EXPO 2015—11th Int’l Hydrogen & Fuel Cell ExpoGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Akari Hayashi
    • 1
    Email author
  • Masamichi Nishihara
    • 2
  • Junko Matsuda
    • 2
  • Kazunari Sasaki
    • 1
  1. 1.International Research Center for Hydrogen EnergyKyushu UniversityFukuokaJapan
  2. 2.International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu UniversityFukuokaJapan

Personalised recommendations