Advertisement

Liquid Hydrogen Carriers

  • Hai-Wen LiEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter describes key technologies for typical liquid hydrogen carriers, including the liquefaction process and storage vessel of liquid hydrogen, de-/re-hydrogenation properties of cycloalkane and heterocycle-based organic hydrides, as well as production process and thermal decomposition of ammonia.

Keywords

Hydrogen carrier Liquid hydrogen Liquefaction Organic hydride Ammonia Hydrogen storage 

References

  1. 1.
  2. 2.
  3. 3.
    Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy 34:4569–4574CrossRefGoogle Scholar
  4. 4.
    Hanada T, Takahashi K (2009) Liquid-hydrogen storage. In: Ohta T, Veziroglu TN (eds) Energy carriers and conversion systems. UNESCO-EOLSSGoogle Scholar
  5. 5.
    Züttel A (2003) Materials for hydrogen storage. Mater Today 6:24–33CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Sultan O, Shaw M (1975) Study of automotive storage of hydrogen using recyclable chemical carriers. ERDA, Ann Arbor, MI, TEC-75/003Google Scholar
  8. 8.
    Okada Y, Mitsunori S (2013) Development of large-scale H2 storage and transportation technology with liquid organic hydrogen carrier (LOHC). GCC-JAPAN environment symposia 2013. https://www.chiyoda-corp.com/technology/files/Joint%20GCC-JAPAN%20Environment%20Symposia%20in%202013.pdf. Accessed 2 May 2015
  9. 9.
    Karanth NG, Hughes R (1972) The kinetics of the catalytic hydrogenation of toluene. J appl Chem Bwtechnol 23:817–827CrossRefGoogle Scholar
  10. 10.
    Roy S, Datta S (2013) Hydrogenation of toluene on zirconium-modified hexagonal molecular sieve supported platinum and palladium catalysts. Ind Eng Chem Res 52:17360–17368CrossRefGoogle Scholar
  11. 11.
    Alhumaidan F, Cresswell D, Garforth A (2011) Hydrogen storage in liquid organic hydride: producing hydrogen catalytically from methylcyclohexane. Energy Fuels 25:4217–4234CrossRefGoogle Scholar
  12. 12.
    Pez GP, Scott AR, Cooper AC, Cheng H (2006) Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. US Patent 7,101,530, 5 Sep 2006Google Scholar
  13. 13.
    Clot E, Eisenstein O, Crabtree RH (2007) Computational structure–activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chem Commun 2231–2233Google Scholar
  14. 14.
    Teichmann D, Arlt W, Wasserscheid P, Freymann R (2011) A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ Sci 4:2767–2773CrossRefGoogle Scholar
  15. 15.
    Zhu Q, Xu Q (2015) Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ Sci 8:478–512CrossRefGoogle Scholar
  16. 16.
    Luo W, Campbell PG, Zakharov LN, Liu S-Y (2011) A single-component liquid-phase hydrogen storage material. J Am Chem Soc 133:19326–19329CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Potential roles of ammonia in a hydrogen economy. http://www.hydrogen.energy.gov/pdfs/nh3_paper.pdf. Accessed 2 May 2015
  19. 19.
  20. 20.
    Yin SF, Xu BQ, Zhou XP, Au CT (2004) A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl Catal A Gen 277:1–9CrossRefGoogle Scholar
  21. 21.
    David WIF, Makepeace JW, Callear SK, Hunter HMA, Taylor JD, Wood TJ, Jones MO (2014) Hydrogen production from ammonia using sodium amide. J Am Chem Soc 136:13082–13085CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.International Research Center for Hydrogen EnergyKyushu UniversityFukuokaJapan

Personalised recommendations