Skip to main content

Solid Hydrogen Storage Materials: High Surface Area Adsorbents

  • Chapter
  • First Online:
Hydrogen Energy Engineering

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter describes main hydrogen adsorption characteristics and key parameters closely related to the sorption mechanism of high surface area sorbent materials by highlighting two promising materials of nanostructured carbon and metal-organic-frameworks (MOFs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  Google Scholar 

  2. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA Rouquerol J Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Google Scholar 

  3. Simpson L (2010) HSCoE final report executive summary. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen_sorption_coe_final_report.pdf. Accessed 27 Oct 2015

  4. Kim BH, Hong WG, Yu HY, Han YK, Lee SM, Chang SJ, Moon HR, Jun Y, Kin HJ (2012) Thermally modulated multilayered graphene oxide for hydrogen storage. Phys Chem Chem Phys 14:1480–1484

    Article  Google Scholar 

  5. Tozzini V, Pellegrini V (2013) Prospects for hydrogen storage in graphene. Phys Chem Chem Phys 15:80–89

    Article  Google Scholar 

  6. Klechikov AG, Mercier G, Merino P, Blanco S, Merino C, Talyzin AV (2015) Hydrogen storage in bulk graphene-related materials. Microporous Mesoporous Mater 210:46–51

    Article  Google Scholar 

  7. Dillon AC, Heben MJ (2001) Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A 72:133–142

    Article  Google Scholar 

  8. Bénard P, Chahine R (2007) Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr Mater 56:803–808

    Article  Google Scholar 

  9. Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  Google Scholar 

  10. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  Google Scholar 

  11. Liu C (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129

    Article  Google Scholar 

  12. Cheng HM, Yang QH, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39:1447–1454

    Article  Google Scholar 

  13. Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 27:193–202

    Article  Google Scholar 

  14. Wang Q, Johnson JK (1999) Optimization of carbon nanotube arrays for hydrogen adsorption. J Phys Chem B 103:4809–4813

    Article  Google Scholar 

  15. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022

    Article  Google Scholar 

  16. Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303

    Article  Google Scholar 

  17. Noh J, Agarwal R, Schwarz J (1987) Hydrogen storage systems using activated carbon. Int J Hydrogen Energy 12:693–700

    Article  Google Scholar 

  18. de la Casa-Lillo MA, Lamari-Darkrim F, Cazorla-Amorós D, Linares-Solano A (2002) Hydrogen storage in activated carbons and activated carbon fibers. J Phys Chem B 106:10930–10934

    Article  Google Scholar 

  19. Tian HY, Buckley CE, Wang SB, Zhou MF (2009) Enhanced hydrogen storage capacity in carbon aerogels treated with KOH. Carbon 47:2128–2130

    Article  Google Scholar 

  20. Kabbour H, Baumann TF, Satcher JH, Saulnier A, Ahn CC (2006) Toward new candidates for hydrogen storage: high-surface-area carbon aerogels. Chem Mater 18:6085–6087

    Google Scholar 

  21. Hynek S (1997) Hydrogen storage by carbon sorption. Int J Hydrogen Energy 22:601–610

    Article  Google Scholar 

  22. Tanaka H, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2005) Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns. J Am Chem Soc 127:7511–7516

    Article  Google Scholar 

  23. Nishihara H, Hou PX, Li LX, Ito M, Uchiyama M, Kaburagi T, Ikura A, Katamura J, Kawarada T, Mizuuchi K, Kyotani T (2009) High-pressure hydrogen storage in zeolite-templated carbon. J Phys Chem C 113:3189–3196

    Article  Google Scholar 

  24. Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679

    Article  Google Scholar 

  25. Cunning BV, Pyle DS, Merritt CR, Brown CL, Webb CJ, Gray EMA (2014) Hydrogen adsorption characteristics of magnesium combustion derived graphene at 77 and 293 K. Int J Hydrogen Energy 39:6783–6788

    Article  Google Scholar 

  26. Wang L, Lee K, Sun YY, Lucking M, Chen Z, Zhao JJ, Zhang SB (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3:2995–3000

    Article  Google Scholar 

  27. Yuan W, Li B, Li L (2011) A green synthetic approach to graphene nanosheets for hydrogen adsorption. Appl Surf Sci 257:10183–10187

    Article  Google Scholar 

  28. Ma LP, Wu ZS, Li J, Wu ED, Ren WC, Cheng HM (2009) Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrogen Energy 34:2329–2332

    Article  Google Scholar 

  29. Dimitrakakis GK, Tylianakis E, Froudakis GE (2008) Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett 8:3166–3170

    Article  Google Scholar 

  30. Patchkovskii S, Tse JS, Yurchenko SN, Zhechkov L, Heine T, Seifert G (2005) Graphene nanostructures as tunable storage media for molecular hydrogen. Proc Natl Acad Sci 102:10439–10444

    Article  Google Scholar 

  31. Jin Z, Lu W, O’Neill KJ, Parilla PA, Simpson LJ, Kittrell C, Tour JM (2011) Nano-engineered spacing in graphene sheets for hydrogen storage. Chem Mater 23:923–925

    Article  Google Scholar 

  32. Lyth SM, Shao H, Liu J, Sasaki K, Akiba E (2014) Hydrogen adsorption on graphene foam synthesized by combustion of sodium ethoxide. Int J Hydrogen Energy 39:376–380

    Article  Google Scholar 

  33. Li J, Wang X, Liu K, Sun Y, Chen L (2012) High hydrogen-storage capacity of B-adsorbed graphene: first-principles calculation. Solid State Commun 152:386–389

    Article  Google Scholar 

  34. Zhou YG, Zu XT, Gao F, Nie JL, Xiao HY (2009) Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J Appl Phys 105:014309

    Article  Google Scholar 

  35. Chung TCM, Jeong Y, Chen Q, Kleinhammes A, Wu Y (2008) Synthesis of microporous boron-substituted carbon (b/c) materials using polymeric precursors for hydrogen physisorption. J Am Chem Soc 130:6668–6669

    Article  Google Scholar 

  36. Jiang J, Gao Q, Zheng Z, Xia K, Hu J (2010) Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres. Int J Hydrogen Energy 35:210–216

    Article  Google Scholar 

  37. Yang SJ, Cho JH, Oh GH, Nahm KS, Park CR (2009) Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature. Carbon 47:1585–1591

    Article  Google Scholar 

  38. Badzian A, Badzian T, Breval E, Piotrowski A (2001) Nanostructured, nitrogen-doped carbon materials for hydrogen storage. Thin Solid Films 398–399:170–174

    Article  Google Scholar 

  39. Chen L, Xia K, Huang L, Li L, Pei L, Fei S (2013) Facile synthesis and hydrogen storage application of nitrogen-doped carbon nanotubes with bamboo-like structure. Int J Hydrogen Energy 38:3297–3303

    Article  Google Scholar 

  40. Kubas GJ (2001) Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding. J Organomet Chem 635:37–68

    Article  Google Scholar 

  41. Lee H, Ihm J, Cohen ML, Louie SG (2010) Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett 10:793–798

    Article  Google Scholar 

  42. Ataca C, Aktürk E, Ciraci S (2009) Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations. Phys Rev B 79:041406

    Article  Google Scholar 

  43. Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833

    Article  Google Scholar 

  44. Parambhath VB, Nagar R, Sethupathi K, Ramaprabhu S (2011) Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J Phys Chem C 115:15679–15685

    Article  Google Scholar 

  45. Subrahmanyam KS, Kumar P, Maitra U, Govindaraj A, Hembram KPSS, Waghmare UV, Rao CNR (2011) Chemical storage of hydrogen in few-layer graphene. Proc Natl Acad Sci 108:2674–2677

    Article  Google Scholar 

  46. Sarkar AK, Saha S, Ganguly S, Banerjee D, Kargupta K (2014) Hydrogen storage on graphene using Benkeser reaction. Int J Energy Res 38:1889–1895

    Article  Google Scholar 

  47. Zhou HC, Kitagawa S (2014) Metal-organic frameworks (MOFs). Chem Soc Rev 43:5415–5418

    Article  Google Scholar 

  48. http://www.hydrogen.energy.gov/pdfs/review06/st_22_yaghi.pdf. Accessed 21 April 2015

  49. http://www.hydrogen.energy.gov/pdfs/review09/st_33_doonan.pdf. Accessed 21 April 2015

  50. http://www.hydrogen.energy.gov/pdfs/progress14/iv_b_7_veenstra_2014.pdf. Accessed 21 April 2015

  51. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Article  Google Scholar 

  52. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    Article  Google Scholar 

  53. Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 128:3494–3495

    Article  Google Scholar 

  54. Furukawa H, Miller MA, Yaghi OM (2007) Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J Mater Chem 17:3197–3204

    Article  Google Scholar 

  55. Zhao D, Yuan DQ, Zhou HC (2008) The current status of hydrogen storage in metal-organic frameworks. Energy Environ Sci 1:222–235

    Article  Google Scholar 

  56. Sculley J, Yuan DQ, Zhou HC (2011) The current status of hydrogen storage in metal-organic frameworks-updated. Energy Environ Sci 4:2721–2735

    Article  Google Scholar 

  57. Rzepka M, Lamp P, de la Casa-Lillo MA (1998) Physisorption of hydrogen on microporous carbon and carbon nanotubes. J Phys Chem B 102:10894–10898

    Article  Google Scholar 

  58. Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314

    Article  Google Scholar 

  59. Sadakiyo M, Yamada T, Honda K, Matsui H, Kitagawa H (2014) Control of crystalline proton-conducting pathways by water-induced transformations of hydrogen-bonding networks in a metal-organic framework. J Am Chem Soc 136:7701–7707

    Article  Google Scholar 

  60. Sadakiyo M, Kasai H, Kato K, Takata M, Yamauchi M (2014) Design and synthesis of hydroxide ion-conductive metal-organic frameworks based on salt inclusion. J Am Chem Soc 136:1702–1705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiyu Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Shao, H., Lyth, S.M. (2016). Solid Hydrogen Storage Materials: High Surface Area Adsorbents. In: Sasaki, K., Li, HW., Hayashi, A., Yamabe, J., Ogura, T., Lyth, S. (eds) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56042-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56042-5_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56040-1

  • Online ISBN: 978-4-431-56042-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics