Advertisement

Solid Hydrogen Storage Materials: Non-interstitial Hydrides

  • Hai-Wen LiEmail author
  • Guotao Wu
  • Teng He
  • Ping Chen
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter describes syntheses methods, crystal structures, de-/re-hydrogenation properties as well as their improvement from both thermodynamic and kinetic aspects of typical non-interstitial hydrides, such as complex hydrides including alanates, amides and borohydrides, magnesium hydride, aluminum hydride and ammonia borane.

Keywords

Non-interstitial hydride Complex hydride Synthesis Thermodynamics Kinetics Chemical combination Electronegativity Hydrogen storage 

References

  1. 1.
    Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd 253–254:1–9CrossRefGoogle Scholar
  2. 2.
    Fichtner M, Fuhr O, Kircher O (2003) Magnesium alanate-a material for reversible hydrogen storage. J Alloys Compd 356–357:418–422CrossRefGoogle Scholar
  3. 3.
    Ashby EC, Brendel GJ, Redman HE (1963) Direct synthesis of complex metal hydrides. Inorg Chem 2:499–506CrossRefGoogle Scholar
  4. 4.
    Sato T, Ikeda K, Li H-W, Yukawa H, Morinaga M, Orimo S (2009) Direct dry syntheses and thermal analyses of a series of aluminum complex hydrides. Mater Trans 50:182–186CrossRefGoogle Scholar
  5. 5.
    Lauher JW, Dougherty D, Herley PJ (1979) Sodium tetrahydroaluminate. Acta Crystallogr B35:1454–1456CrossRefGoogle Scholar
  6. 6.
    Hauback BC, Brinks HW, Jensen CM, Murphy K, Maeland AJJ (2003) Neutron diffraction structure determination of NaAlD4. J Alloys Compd 358:142–145CrossRefGoogle Scholar
  7. 7.
    Bogdanović B, Brand RA, Marjanović A, Schwickardi M, Tölle J (2000) Metaldoped aluminium hydrides as potential new hydrogen storage materials. J Alloys Compd 302:36–58CrossRefGoogle Scholar
  8. 8.
    Ashby EC, Kobetz P (1966) The direct synthesis of Na3AlH6. Inorg Chem 5:1615–1617CrossRefGoogle Scholar
  9. 9.
    Dymova TN, Eliseeva NG, Bakum SI, Dergachev YM (1974) Direct synthesis of alkali metal aluminum hydrides in the melt. Dokl Akad Nauk SSSR 215:1369–1372Google Scholar
  10. 10.
    Block J, Gray AP (1965) The thermal decomposition of lithium aluminum hydride. Inorg Chem 4:304–305CrossRefGoogle Scholar
  11. 11.
    Jang J-W, Shim J-H, Cho YW, Lee BJ (2006) Thermodynamic calculation of LiH ↔ Li3AlH6 ↔ LiAlH4 reactions. J Alloys Compd 420:286–290CrossRefGoogle Scholar
  12. 12.
    Wang J, Ebner AD, Ritter JA (2006) Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. J Am Chem Soc 128:5949–5954CrossRefGoogle Scholar
  13. 13.
    Anton DL (2003) Hydrogen desorption kinetics in transition metal modified NaAlH4. J Alloys Compd 356–357:400–404CrossRefGoogle Scholar
  14. 14.
    Gross KJ, Majzoub EH, Spangler SW (2003) The effects of titanium precursors on hydriding properties of alanates. J Alloys Compd 356–357:423–428CrossRefGoogle Scholar
  15. 15.
    Graetz J, Reilly JJ, Johnson J, Ignatov AYu, Tyson TA (2004) X-ray absorption study of Ti-activated sodium aluminum hydride. Appl Phys Lett 85:500–502CrossRefGoogle Scholar
  16. 16.
    Moysés Araújo C, Li S, Ahuja R, Jena P (2005) Vacancy-mediated hydrogen desorption in NaAlH4. Phy Rev B 72:165101CrossRefGoogle Scholar
  17. 17.
    Gunaydin H, Houk KN, Ozolinš V (2008) Vacancy-mediated dehydrogenation of sodium alanate. PNAS 105:3673–3677CrossRefGoogle Scholar
  18. 18.
    Balde CP, Mijovilovich AE, Koningsberger DC, van der Eerden AMJ, Smith AD, de Jong KP, Bitter JH (2007) XAFS study of the Al K-edge in NaAlH4. J Phys Chem C 111:2797–2802CrossRefGoogle Scholar
  19. 19.
    Kadono R, Shimomura K, Satoh KH, Takeshita S, Koda A, Nishiyama K, Akiba E, Ayabe RM, Kuba M, Jensen CM (2008) Hydrogen bonding in sodium alanate: a muon spin rotation study. Phys Rev Lett 100:26401CrossRefGoogle Scholar
  20. 20.
    Frankcombe TJ (2012) Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem Rev 112:2164–2178CrossRefGoogle Scholar
  21. 21.
    Johnson TA, Jorgensen SW, Dedrick DE (2011) Performance of a full-scale hydrogen-storage tank based on complex hydrides. Faraday Discuss 151:327–352CrossRefGoogle Scholar
  22. 22.
    Bellosta von Colbe JM, Metz O, Lozano GA, Pranzas PK, Schmitz HW, Beckmann F, Schreyer A, Klassen T, Dornheim M (2012) Behavior of scaled-up sodium alanate hydrogen storage tanks during sorption. Int J Hydrogen Energy 37:2807–2811CrossRefGoogle Scholar
  23. 23.
    Gay-Lussac JL, Thénard IJ (1809) Notiz über das Kali - und das Natron – Metall. Ann Phys 32:23–39CrossRefGoogle Scholar
  24. 24.
    Chen P, Xiong ZT, Luo JZ, Li JY, Tan KL (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302–304CrossRefGoogle Scholar
  25. 25.
    Greenlee KW, Henne AL, Fernelius WC (1946) Inorganic syntheses, vol II. Wiley, Hoboken, pp 128–135CrossRefGoogle Scholar
  26. 26.
    Bergstrom FW (1955) Sodium amide. Org Synth CV 3, P 778Google Scholar
  27. 27.
    Xiong ZT, Hu JJ, Wu GT, Chen P, Luo WF, Gross K, Wang J (2005) Thermodynamic and kinetic investigations of the hydrogen storage in the Li-Mg-N-H system. J Alloys Compd 398:235–239CrossRefGoogle Scholar
  28. 28.
    Hu YH, Ruckenstein E (2006) Hydrogen storage of Li2NH prepared by reacting Li with NH3. Ind Eng Chem Res 45:182–186CrossRefGoogle Scholar
  29. 29.
    Nakamori Y, Kitahara G, Ninomiya A, Aoki M, Noritake T, Towata S, Orimo S (2005) Guidelines for developing amide-based hydrogen storage materials. Mater Trans 46:2093–2097CrossRefGoogle Scholar
  30. 30.
    Kojima Y, Ichikawa T, Fujii H (2009) Fuels-hydrogen storage | complex hydrides, Elsevier, Encyclopedia of Electrochemical Power Sources. pp 473–483Google Scholar
  31. 31.
    Hu YH, Ruckenstein E (2003) Ultra-fast reaction between LiH and NH3 during H2 storage in Li3N. J Phys Chem A 107:9737–9739CrossRefGoogle Scholar
  32. 32.
    Leng HY, Ichikawa T, Hino S, Hanada N, Isobe S, Fujii H (2004) New metal-NH system composed of Mg(NH2)2 and LiH for hydrogen storage. J Phys Chem B 108:8763–8765CrossRefGoogle Scholar
  33. 33.
    Nakamori Y, Kitahara G, Orimo S (2004) Synthesis and dehydriding studies of Mg–N–H systems. J Power Sources 138:309–312CrossRefGoogle Scholar
  34. 34.
    Dafert FW, Miklanz R (1910) Uber einige neue verbindungen von stickstoff und wasserstoff mit lithium. Manotsh Chem 31:981–996CrossRefGoogle Scholar
  35. 35.
    Ruff O, Geoges H, Über das lithium-imid und einige Bemerkungen zu der arbeit von dafert und miklauz: “Über einige neue verbindungen von stickstoff und wasserstoff mit lithium”. Ber Dtsch Chem Ges 44:502–506Google Scholar
  36. 36.
    Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Noritake T, Towata S (2004) Destabilization and enhanced dehydriding reaction of LiNH2. Appl Phys A 79:1765–1767CrossRefGoogle Scholar
  37. 37.
    Kojima Y, Kawai Y (2004) Hydrogen storage of metal nitride by a mechanochemical reaction. Chem Commun 2210–2211Google Scholar
  38. 38.
    Wang J, Li H-W, Chen P (2013) Amides and borohydrides for high-capacity solid-state hydrogen storage-materials design and kinetic improvements. MRS Bull 38:480–487CrossRefGoogle Scholar
  39. 39.
    Pinkerton FE, Meisner GP, Meyer MS, Balogh MP, Kundrat MD (2005) Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. J Phys Chem B 109:6–8CrossRefGoogle Scholar
  40. 40.
    Vajo JJ, Mertens F, Ahn CC, Bowman RC, Fultz B (2004) Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J Phys Chem B 108:13977–13983CrossRefGoogle Scholar
  41. 41.
    Gosalawit-Utke R, Colbe J, Gornheim M, Jensen TR, Cerenius Y, Bonatto CM, Peschke M, Bormann R (2010) LiF-MgB2 system for reversible hydrogen storage. J Phys Chem C 114:10291–10296CrossRefGoogle Scholar
  42. 42.
    Chen P, Xiong ZT, Yang LF, Wu GT, Luo WF (2006) Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. J Phys Chem B 110:14221–14225CrossRefGoogle Scholar
  43. 43.
    Shaw LL, Ren R, Markmaitree T, Osborn W (2008) Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system. J Alloys Compd 448:263–271CrossRefGoogle Scholar
  44. 44.
    Liu YF, Zhong K, Luo K, Gao MX, Pan HG, Wang QD (2009) Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li–Mg–N–H System. J Am Chem Soc 131:1862–1870CrossRefGoogle Scholar
  45. 45.
    Wang JH, Liu T, Wu GT, Li W, Liu YF, Araujo CM, Scheicher RH, Blomqvist A, Ahuja R, Xiong ZT, Yang P, Gao MX, Pan HG, Chen P (2009) Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. Angew Chem Int Ed 48:5828–5832CrossRefGoogle Scholar
  46. 46.
    Li H-W, Yan Y, Orimo S, Züttel A, Jensen CM (2011) Recent progress in metal borohydrides for hydrogen storage. Energies 4:185–214CrossRefGoogle Scholar
  47. 47.
    Rude LH, Nielsen TK, Ravnsbæk DB, Bösenberg U, Ley MB, Richter B, Arnbjerg LM, Dornheim M, Filinchuk Y, Besenbacher F, Jensen TR (2011) Tailoring properties of borohydrides for hydrogen storage: a review. Phys Status Solidi A 208:1754–1773CrossRefGoogle Scholar
  48. 48.
    Schlesinger HI, Brown HC, Metallo borohydrides. (1940) III. Lithium borohydride. J Am Chem Soc 62:3429–3435Google Scholar
  49. 49.
    Schlesinger HI, Brown HC, Hoekstra HR, Rapp LR (1953) New developments in the chemistry of diborane and the borohydrides. J Am Chem Soc 75:199–204CrossRefGoogle Scholar
  50. 50.
    Friedrichs O, Borgschulte A, Kato S, Buchter F, Gremaud R, Remhof A, Züttel A (2009) Low-temperature synthesis of LiBH4 by gas-solid reaction. Chem Eur J 15:5531–5534CrossRefGoogle Scholar
  51. 51.
    Konoplev VN, Bakulina VM (1971) Some properties of magnesium borohydride. Rus Chem Soc 20:136–138Google Scholar
  52. 52.
    Li H-W, Kikuchi K, Nakamori Y, Miwa K, Towata S, Orimo S (2007) Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2. Scripta Mater 57:679–682CrossRefGoogle Scholar
  53. 53.
    Matsunaga T, Buchter F, Miwa K, Towata S, Orimo S, Züttel A (2008) Magnesium borohydride: a new hydrogen storage material. Renewable Energy 33:193–196CrossRefGoogle Scholar
  54. 54.
    Cěrny R, Filinchuk Y, Hagemann H, Yvon K (2007) Magnesium borohydride: synthesis and crystal structure. 46:5765–5767Google Scholar
  55. 55.
    Sato T, Miwa K, Nakamori Y, Ohoyama K, Li H-W, Noritake T, Aoki M, Towata S, Orimo S (2008) Experimental and computational studies on solvent-free rare-earth metal borohydrides R(BH4)3 (R=Y, Dy, and Gd). Phys Rev B 77:104114CrossRefGoogle Scholar
  56. 56.
    Yan Y, Li H-W, Sato T, Umeda N, Miwa K, Towata S, Orimo S (2009) Dehydriding and rehydriding properties of yttrium borohydride Y(BH4)3 prepared by liquid-phase synthesis. Int J Hydrogen Energy 34:5732–5736CrossRefGoogle Scholar
  57. 57.
    Köster R, Schoeller K (1957) Neue herstellungsmethoden für metallborhydride. Angew Chem 69:94Google Scholar
  58. 58.
    Harris PM, Meibohm EP (1947) The crystal structure of lithium borohydride LiBH4. J Am Chem Soc 69:1231–1232CrossRefGoogle Scholar
  59. 59.
    Soulie J-Ph, Renaudin G, Cerny R, Yvon K (2002) Lithium boro-hydride LiBH4 I. crystal structure. J Alloys Compd 346:200–205CrossRefGoogle Scholar
  60. 60.
    Filinchuk Y, Chernyshov D, Cerny R (2008) Lightest borohydride probed by synchrotron X-ray diffraction: experiment calls for a new theoretical revision. J Phys Chem C 112:10579–10584CrossRefGoogle Scholar
  61. 61.
    Tekin A, Caputo R, Züttel A (2010) First-principles determination of the ground-state structure of LiBH4. Phys Rev Lett 104:215501CrossRefGoogle Scholar
  62. 62.
    Li H-W, Kikuchi K, Nakamori Y, Ohba N, Miwa K, Towata S, Orimo S (2008) Dehydriding and rehydriding processes of well-crystallized Mg(BH4)2 accompanying with formation of intermediate compounds. Acta Mater 56:1342–1347CrossRefGoogle Scholar
  63. 63.
    Hwang SJ, Bowman RC, Reiter JW, Rijssenbeek J, Soloverchik GL, Zhao J-C, Kabbour H, Ahn CC (2008) NMR confirmation for formation of [B12H12]2− complexes during hydrogen desorption from metal borohydrides. J Phys Chem C 112:3164–3169CrossRefGoogle Scholar
  64. 64.
    Ozolin V, Majzoub EH, Wolverton C (2009) First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H System. J Am Chem Soc 131:230–237CrossRefGoogle Scholar
  65. 65.
    Chong M, Karkamkar A, Autrey T, Orimo S, Jalisatgi S, Jensen CM (2011) Reversible dehydrogenation of magnesium borohydride to magnesium triborane in the solid state under moderate conditions. Chem Commun 47:1330–1332CrossRefGoogle Scholar
  66. 66.
    Yan Y, Li H-W, Maekawa H, Aoki M, Noritake T, Matsumoto M, Miwa K, Towata S, Orimo S (2011) Formation process of [B12H12]2− from [BH4] during the dehydrogenation reaction of Mg(BH4)2. Mater Trans 52:1443–1446CrossRefGoogle Scholar
  67. 67.
    Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Towata S, Züttel A (2005) Dehydriding and rehydriding reactions of LiBH4. J Alloys Compd 404:427–430CrossRefGoogle Scholar
  68. 68.
    Li H-W, Akiba E, Orimo S (2013) Comparative study on the reversibility of pure metal borohydrides. J Alloy Compd 580:S292–S295CrossRefGoogle Scholar
  69. 69.
    Nakamori Y, Miwa K, Ninoyiya A, Li H-W, Ohba N, Towata S, Züttel A, Orimo S (2006) Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: first-principles calculations and experiments. Phys Rev B 74:045126CrossRefGoogle Scholar
  70. 70.
    Li H-W, Orimo S, Nakamori Y, Miwa K, Ohba N, Towata S, Züttel A (2007) Materials designing of metal borohydrides: viewpoints from thermodynamical stabilities. J Alloys Compd 446–447:315–318CrossRefGoogle Scholar
  71. 71.
    Vajo JJ, Olson GL (2007) Hydrogen storage in destabilized chemical systems. Scripta Mater 56:829–834CrossRefGoogle Scholar
  72. 72.
    Vajo JJ, Skeith SL, Mertens F (2005) Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B 109:3719–3722CrossRefGoogle Scholar
  73. 73.
    Bösenberg U, Doppiu S, Mosegaard L, Barkhordarian G, Eigen N, Borgschulte A, Jensen TR, Cerenius Y, Gutfleisch O, Klassen T, Dornheim M, Bormann R (2007) Hydrogen sorption properties of MgH2 + 2LiBH4. Acta Mater 55:3951–3958CrossRefGoogle Scholar
  74. 74.
    Pinkerton FE, Meyer MS, Meisner GP, Balogh MP, Vajo JJ (2007) Phase boundaries and reversibility of LiBH4/MgH2 hydrogen storage material. J Phys Chem C 111:12881–12885CrossRefGoogle Scholar
  75. 75.
    Yan Y, Li H-W, Maekawa H, Miwa K, Towata S, Orimo S (2011) Formation of intermediate compound Li2B12H12 during the dehydrogenation process of the LiBH4-MgH2 system. J Phys Chem C 115:19419–19423CrossRefGoogle Scholar
  76. 76.
    Price TE, Grant DM, Weston D, Hansen T, Arnbjerg LM, Ravnsbæk DB, Jensen TR, Walker GS (2011) The effect of H2 partial pressure on the reaction progression and reversibility of lithium-containing multicomponent destabilized hydrogen storage systems. J Am Chem Soc 133:13534–13538CrossRefGoogle Scholar
  77. 77.
    Shim JH, Lim JH, Rather SU, Lee YS, Reed D, Kim Y, Book D, Cho YW (2010) Effect of hydrogen back pressure on dehydrogenation behavior of LiBH4-based reactive hydride composites. J Phys Chem Lett 1:59–63CrossRefGoogle Scholar
  78. 78.
    Jin SA, Lee YS, Shim JH, Cho YW (2008) Reversible hydrogen storage in LiBH4–MH2 (M=Ce, Ca) composites. J Phys Chem C 112:9520–9524CrossRefGoogle Scholar
  79. 79.
    Spatz P, Aebischer HA, Krozer A, Schlapbach L (1993) The diffusion of H in Mg and the nucleation and growth of MgH2 in thin films. Z Phys Chem 181:393–397CrossRefGoogle Scholar
  80. 80.
    Bogdanovic B (1985) Catalytic synthesis of organo-lithium and organomagnesium compounds and of lithium and magnesium hydrides—applications in organic-synthesis and hydrogen storage. Angew Chem Itn Edit 24:262–273CrossRefGoogle Scholar
  81. 81.
    Uesugi H, Sugiyama T, Nii H, Ito T, Nakatsugawa I (2011) Industrial production of MgH2 and its application. J Alloys Compd 509:S650–S653CrossRefGoogle Scholar
  82. 82.
    Vajeeston P, Ravindran P, Kjekshus A, Fjellvåg H (2002) Pressure-induced structural transitions in MgH2. Phys Rev Lett 89:175506CrossRefGoogle Scholar
  83. 83.
    Noritake T, Aoki M, Towata S, Seno Y, Hirose Y, Nishibori E, Takata M, Sakata M (2002) Chemical bonding of hydrogen in MgH2. Appl Phys Lett 81:2008–2010CrossRefGoogle Scholar
  84. 84.
    Zhu M, Lu Y, Ouyang L, Wang H (2013) Thermodynamic tuning of Mg-based hydrogen storage alloys: a review. Materials 6:4654–4674CrossRefGoogle Scholar
  85. 85.
    Wagemans RWP, van Lenthe JH, de Jongh PE, van Dillen AJ, de Jong KP (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127:16675–16680CrossRefGoogle Scholar
  86. 86.
    Huot J, Liang G, Boily S, Van Nesteb A, Schulza R (1999) Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloys Compd 293–295:495–500CrossRefGoogle Scholar
  87. 87.
    Nielsen TK, Manickam K, Hirscher M, Besenbacher F, Jensen TR (2009) Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. ACS Nano 3:3521–3528CrossRefGoogle Scholar
  88. 88.
    Barkhordarian G, Klassen T, Bormann R (2003) Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr Mater 49:213–217CrossRefGoogle Scholar
  89. 89.
    Barkhordarian G, Klassen T, Bormann R (2004) Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J Alloys Compd 364:242–246CrossRefGoogle Scholar
  90. 90.
    Finholt AE, Bond AC, Schlesinger HI (1947) Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry. J Am Chem Soc 69:1199–1203CrossRefGoogle Scholar
  91. 91.
    Chizinsky G, Evans GG, GibbJr TPP, RiceJr MJ (1955) Non-solvated aluminum hydride. J Am Chem Soc 77:3164–3165CrossRefGoogle Scholar
  92. 92.
    Brower FM, Matzek NE, Reigler PF, Rinn HW, Roberts CB, Schmidt DL, Snover JA, Terada K (1976) Preparation and properties of aluminum hydride. J Am Chem Soc 98:2450–2453CrossRefGoogle Scholar
  93. 93.
    Bulychev BM, Verbetskii VN, Storozhenko PA (2008) “Direct” synthesis of unsolvated aluminum hydride involving Lewis and Bronsted acids. Russ J Inorg Chem 53:1000–1005CrossRefGoogle Scholar
  94. 94.
    Bulychev BM, Storozhenko PA, Fokin VN (2009) “One-step” synthesis of nonsolvated aluminum hydride. Russ Chem Bull Inter Ed 58:1817–1823CrossRefGoogle Scholar
  95. 95.
    Graetz J, Reilly JJ, Yartys VA, Maehlen JP, Bulychev BM, Antonov VE, Tarasov BP, Gabis IE (2011) Aluminum hydride as a hydrogen and energy storage material: past, present and future. J Alloys Comp 509:S517–S528CrossRefGoogle Scholar
  96. 96.
    Saitoh H, Machida A, Katayama Y, Aoki K (2008) Formation and decomposition of AlH3 in the aluminum-hydrogen system. Appl Phys Lett 93:151918CrossRefGoogle Scholar
  97. 97.
    Clasen H (1962) German Patent 1141:623Google Scholar
  98. 98.
    Zidan R, Garcia-Diaz BL, Fewox CS, Stowe AC, Gray JR, Harter AG (2009) Aluminium hydride: a reversible material for hydrogen storage. Chem Commun 25:3717–3719Google Scholar
  99. 99.
    Murib JH, Horvitz D (1972) US Patent 3,642,853Google Scholar
  100. 100.
    Stecher O, Wiberg E (1942) Über einen nichtflüchtigen, polymeren aluminiumwasserstoff (AlH3)x und einige flüchtige verbindungen des monomeren AlH3. Ber Dtsch Chem Ges 75B:2003–2012CrossRefGoogle Scholar
  101. 101.
    Graetz J, Chaudhuri S, Wegrzyn J, Celebi Y, Johnson JR, Zhou W, Reilly JJ (2007) Direct and reversible synthesis of AIH3-triethylenediamine from Al and H2. J Phys Chem C 111:19148–19152CrossRefGoogle Scholar
  102. 102.
    Lacina D, Wegrzyn J, Reilly J, Celebi Y, Graetz J (2010) Characterization of dimethylethylamine-alane and the regeneration of aluminum hydride. Energy Environ Sci 3:1099–1105CrossRefGoogle Scholar
  103. 103.
    Turley JW, Rinn HW (1969) The crystal structure of aluminum hydride. Inorg Chem 8:18–22CrossRefGoogle Scholar
  104. 104.
    Brinks HW, Istad-Lem A, Hauback BC (2006) Mechanochemical synthesis and crystal structure of alpha′-AlD3 and alpha-AlD3. J Phys Chem B 110:25833–25837CrossRefGoogle Scholar
  105. 105.
    Brinks HW, Langley W, Jensen CM, Graetz J, Reilly JJ, Hauback BC (2007) Synthesis and crystal structure of β-AlD3. J Alloys Compd 433:180–183CrossRefGoogle Scholar
  106. 106.
    Yartys VA, Denys RV, Maehlen JP, Frommen C, Fichtner M, Bulychev BM, Emerich H (2007) Double-bridge bonding of aluminium and hydrogen in the crystal structure of gamma-AlH3. Inorg Chem 46:1051–1055CrossRefGoogle Scholar
  107. 107.
    Brinks HW, Brown C, Jensen CM, Graetz J, Reilly JJ, Hauback BC (2007) The crystal structure of gamma-AlD3. J Alloys Compd 441:364–367CrossRefGoogle Scholar
  108. 108.
    Sartori S, Opalka SM, Løvvik OM, Guzik MN, Tang X, Hauback BC (2008) Experimental studies of α-AlD3 and α′-AlD3 versus first-principles modelling of the alane isomorphs. J Mater Chem 18:2361–2370CrossRefGoogle Scholar
  109. 109.
    Graetz J, Reilly JJ (2006) Thermodynamics of the α, β and γ polymorphs of AlH3. J Alloys Compd 424:262–265CrossRefGoogle Scholar
  110. 110.
    Sinke GC, Walker LC, Oetting FL, Stull DR (1967) Thermodynamic properties of aluminum hydride. J Chem Phys 47:2759–2761CrossRefGoogle Scholar
  111. 111.
    Tkacz M, Filipek S, Baranowski B (1983) High pressure synthesis of aluminium hydride from the elements. Pol J Chem 57:651–653Google Scholar
  112. 112.
    Baranowski B, Tkacz M (1983) The equilibrium between solid aluminium hydride and gaseous hydrogen. Z Phys Chem NF 135:27–38CrossRefGoogle Scholar
  113. 113.
    Konovalov SK, Bulychev BM (1995) The P, T-state diagram and solid phase synthesis of aluminum hydride. Inorg Chem 34:172–175CrossRefGoogle Scholar
  114. 114.
    Herley PJ, Chrlstofferson O, Irwin R (1981) Decomposition of.alpha.-aluminum hydride powder. 1. Thermal decomposition. J Phys Chem 85:1874–1881CrossRefGoogle Scholar
  115. 115.
    Graetz J, Reilly JJ (2005) Decomposition kinetics of the AlH3 polymorphs. J Phys Chem B 109:22181–22185CrossRefGoogle Scholar
  116. 116.
    Graetz J, Reilly JJ, Kulleck JG, Bowman RC (2007) Kinetics and thermodynamics of the aluminum hydride polymorphs. J Alloys Compd 446–447:271–275CrossRefGoogle Scholar
  117. 117.
    Maehlen JP, Yartys VA, Denys RV, Fichtner M, Frommen C, Bulychev BM, Pattison P, Emerich H, Filinchuk YE, Chernyshov D (2007) J Alloys Compd 446–447:280–289CrossRefGoogle Scholar
  118. 118.
    Sandrock G, Reilly J, Graetz J, Zhou WM, Johnson J, Wegrzyn J (2005) Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles. Appl Phys A 80:687–690CrossRefGoogle Scholar
  119. 119.
    Sandrock G, Reilly J, Graetz J, Zhou WM, Johnson J, Wegrzyn J (2006) Alkali metal hydride doping of α-AlH3 for enhanced H2 desorption kinetics. J Alloys Compd 421:185–189CrossRefGoogle Scholar
  120. 120.
    Orimo S, Nakamori Y, Kato T, Brown C, Jensen CM (2006) Intrinsic and mechanically modified thermal stabilities of α-, β- and γ-aluminum trihydrides AlH3. Appl Phys A 83:5–8CrossRefGoogle Scholar
  121. 121.
    Kato S, Bielmann M, Ikeda K, Orimo S, Borgschulte A, Zuttel A (2010) Surface changes on AlH3 during the hydrogen desorption. Appl Phys Lett 96:051912CrossRefGoogle Scholar
  122. 122.
    Staubitz A, Robertson APM, Manners I (2010) Ammonia—borane and related compounds as dihydrogen sources. Chem Rev 110:4079–4124CrossRefGoogle Scholar
  123. 123.
    Stephens FH, Pons V, Baker RT (2007) Ammonia-borane, the hydrogen storage source par excellence. Dalton Trans 25:2613–2626Google Scholar
  124. 124.
    Shore SG, Parry RW (1955) The crystalline compound ammonia-borane, H3NBH3. J Am Chem Soc 77:6084–6085CrossRefGoogle Scholar
  125. 125.
    Lippert EL, Lipscomb WN (1956) The structure of H3NBH3. J Am Chem Soc 78:503–504CrossRefGoogle Scholar
  126. 126.
    Hoon CF, Reynhardt EC (1983) Molecular-dynamics and structures of amine boranes of the type R3N BH3. I. X-ray investigation of H3N BH3 at 295 K and 110 K. J Phys C 16:6129–6136CrossRefGoogle Scholar
  127. 127.
    Klooster WT, Koetzle TF, Siegbahn PEM, Richardson TB, Crabtree RH (1999) Study of the N–H H–B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. J Am Chem Soc 121:6337–6343CrossRefGoogle Scholar
  128. 128.
    Hu MG, Geanangel RA, Wendlandt WW (1978) The thermal decomposition of ammonia borane. Thermochim Acta 23:249–255CrossRefGoogle Scholar
  129. 129.
    Wolf G, Baumann J, Baitalow F, Hoffmann FP (2000) Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochim Acta 343:19–25CrossRefGoogle Scholar
  130. 130.
    Baitalow F, Baumann J, Wolf G, Jaenicke-Röβler K, Leitner G (2002) Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods. Thermochim Acta 391:159–168CrossRefGoogle Scholar
  131. 131.
    Stowe AC, Shaw WJ, Linehan JC, Schmid B, Autrey T (2007) In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. Phys Chem Chem Phys 9:1831–1836CrossRefGoogle Scholar
  132. 132.
    Shaw WJ, Linehan JC, Szymczak NK, Heldebrant D, Yonker C, Camaioni D, Baker RT, Autrey T (2008) In situ multinuclear NMR spectroscopic studies of the thermal decomposition of ammonia borane in solution. Angew Chem Int Ed 47:7493–7496CrossRefGoogle Scholar
  133. 133.
    Heldebrant DJ, Karkamkar A, Hess NJ, Bowden M, Rassat S, Zheng F, Rappe K, Autrey T (2008) The effects of chemical additives on the induction phase in solid-state thermal decomposition of ammonia borane. Chem Mater 20:5332–5336CrossRefGoogle Scholar
  134. 134.
    Denney MC, Pons V, Hebden TJ, Heinekey DM, Goldberg KI (2006) Efficient catalysis of ammonia borane dehydrogenation. J Am Chem Soc 128:12048–12049CrossRefGoogle Scholar
  135. 135.
    Paul A, Musgrave C (2007) Catalyzed dehydrogenation of ammonia–borane by iridium dihydrogen pincer complex differs from ethane dehydrogenation. Angew Chem Int Ed 46:8153–8156CrossRefGoogle Scholar
  136. 136.
    Stephens FH, Baker RT, Matus MH, Grant DJ, Dixon DA (2007) Acid initiation of ammonia–borane dehydrogenation for hydrogen storage. Angew Chem Int Ed 46:746–749CrossRefGoogle Scholar
  137. 137.
    Himmelberger DW, Yoon CW, Bluhm ME, Carroll PJ, Sneddon LG (2009) Base-promoted ammonia borane hydrogen-release. J Am Chem Soc 131:14101–14110CrossRefGoogle Scholar
  138. 138.
    Staubitz A, Soto AP, Manners I (2008) Iridium-catalyzed dehydrocoupling of primary amine–borane adducts: a route to high molecular weight polyaminoboranes, boron–nitrogen analogues of polyolefins. Angew Chem Int Ed 47:6212–6215CrossRefGoogle Scholar
  139. 139.
    Boddeker KW, Shore SG, Bunting RK (1966) Boron-nitrogen chemistry. 1. Syntheses and properties of new cycloborazanes, (BH2NH2)n. J Am Chem Soc 88:4396–4401CrossRefGoogle Scholar
  140. 140.
    Jaska CA, Temple K, Lough AJ, Manners I (2001) Rhodium-catalyzed formation of boron–nitrogen bonds: a mild route to cyclic aminoboranes and borazines. Chem Commun 11:962–963Google Scholar
  141. 141.
    Keaton RJ, Blacquiere JM, Baker RT (2007) Base metal catalyzed dehydrogenation of ammonia—borane for chemical hydrogen storage. J Am Chem Soc 129:1844–1845CrossRefGoogle Scholar
  142. 142.
    He T, Xiong Z, Wu G, Chu H, Wu C, Zhang T, Chen P (2009) Nanosized Co- and Ni-catalyzed ammonia borane for hydrogen storage. Chem Mater 21:2315–2318CrossRefGoogle Scholar
  143. 143.
    He T, Wang J, Liu T, Wu G, Xiong Z, Yin J, Chu H, Zhang T, Chen P (2011) Quasi in situ Mössbauer and XAS studies on FeB nanoalloy for heterogeneous catalytic dehydrogenation of ammonia borane. Catal Today 170:69–75CrossRefGoogle Scholar
  144. 144.
    Gutowska A, Li L, Shin Y, Wang CM, Li XS, Linehan JC, Smith RS, Kay BD, Schmid B, Shaw W, Gutowski M, Autrey T (2005) Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed 44:3578–3582CrossRefGoogle Scholar
  145. 145.
    Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao G (2007) Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. J Phys Chem B 111:7469–7472CrossRefGoogle Scholar
  146. 146.
    Li Z, Zhu G, Lu G, Qiu S, Yao X (2010) Ammonia Borane Confined by a Metal—organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J Am Chem Soc 132:1490–1491CrossRefGoogle Scholar
  147. 147.
    Schlesinger HI, Burg AB (1938) Hydrides of boron. VIII. The structure of the diammoniate of diborane and its relation to the structure of diborane. J Am Chem Soc 60:290–299CrossRefGoogle Scholar
  148. 148.
    Myers AG, Yang BH, David KJ (1996) Lithium amidotrihydroborate, a powerful new reductant. Transformation of tertiary amides to primary alcohols. Tetrahedron Lett 37:3623–3626CrossRefGoogle Scholar
  149. 149.
    Diyabalanage HVK, Shrestha RP, Semelsberger TA, Scott BL, Bowden ME, Davis BL, Burrell AK (2007) Calcium amidotrihydroborate: A hydrogen storage material. Angew Chem Int Ed 46:8995–8997CrossRefGoogle Scholar
  150. 150.
    Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2008) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7:138–141CrossRefGoogle Scholar
  151. 151.
    Diyabalanage HVK, Nakagawa T, Shrestha RP, Semelsberger TA, Davis BL, Scott BL, Burrell AK, David WIF, Ryan KR, Jones MO, Edwards PP (2010) Potassium(I) amidotrihydroborate: structure and hydrogen release. J Am Chem Soc 132:11836–11837CrossRefGoogle Scholar
  152. 152.
    Luo J, Kang X, Wang P (2013) Synthesis, formation mechanism, and dehydrogenation properties of the long-sought Mg(NH2BH3)2 compound. Energy Environ Sci 6:1018–1025CrossRefGoogle Scholar
  153. 153.
    Zhang QA, Tang CX, Fang CH, Fang F, Sun D, Ouyang LZ, Zhu M (2010) Synthesis, crystal structure and thermal decomposition of strontium amidoborane. J Phys Chem C 114:1709–1714CrossRefGoogle Scholar
  154. 154.
    Genova RV, Fijalkowski KJ, Budzianowski A, Grochala W (2010) Towards Y(NH2BH3)3: Probing hydrogen storage properties of YX3/MNH2BH3 (X=F, Cl; M=Li, Na) and YHx∼3/NH3BH3 composites. J Alloys Compd 499:144–148CrossRefGoogle Scholar
  155. 155.
    Fijalkowski KJ, Genova RV, Filinchuk Y, Budzianowski A, Derzsi M, Jaron T, Leszczynski PJ, Grochala W (2011) Na[Li(NH2BH3)2]—the first mixed-cation amidoborane with unusual crystal structure. Dalton Trans 40:4407–4413CrossRefGoogle Scholar
  156. 156.
    Wu H, Zhou W, Pinkerton FE, Meyer MS, Yao Q, Gadipelli S, Udovic TJ, Yildirim T, Rush JJ (2011) Sodium magnesium amidoborane: the first mixed-metal amidoborane. Chem Commun 47:4102–4104CrossRefGoogle Scholar
  157. 157.
    Xia G, Yu X, Guo Y, Wu Z, Yang C, Liu H, Dou S (2010) Amminelithium amidoborane Li(NH3)NH2BH3: a new coordination compound with favorable dehydrogenation characteristics. Chem Eur J 16:3763–3769CrossRefGoogle Scholar
  158. 158.
    Chua YS, Wu G, Xiong Z, He T, Chen P (2009) Calcium amidoborane ammoniate-synthesis, structure, and hydrogen storage properties. Chem Mater 21:4899–4904CrossRefGoogle Scholar
  159. 159.
    Chua YS, Li W, Shaw WJ, Wu G, Autrey T, Xiong Z, Wong MW, Chen P (2012) Mechanistic investigation on the formation and dehydrogenation of calcium amidoborane ammoniate. ChemSusChem 5:927–931CrossRefGoogle Scholar
  160. 160.
    Chua YS, Wu G, Xiong Z, Karkamkar A, Guo J, Jian M, Wong MW, Autrey T, Chen P (2010) Chem Commun 46:5752–5754CrossRefGoogle Scholar
  161. 161.
    Luo J, Kang X, Fang Z, Wang P (2011) Promotion of hydrogen release from ammonia borane with magnesium nitride. Dalton Trans 40:6469–6474CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.International Research Center for Hydrogen EnergyKyushu UniversityFukuokaJapan
  2. 2.Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianPeople’s Republic of China

Personalised recommendations