Solid Hydrogen Storage Materials: Interstitial Hydrides

  • Etsuo AkibaEmail author
Part of the Green Energy and Technology book series (GREEN)


This chapter describes the formation mechanisms, specific characteristics and classification of interstitial hydrides. Several typical hydrogen storage alloys and their hydrides are selected to discuss crystal structures and hydrogenation/dehydrogenation properties.


Interstitial hydride Self-trapping Classification Alloy Laves phase Superlattice Solid solution Hydrogen storage 


  1. 1.
    Fukai Y (1993) The metal-hydrogen system. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Reilly JJ, Wiswall RH Jr (1968) The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem 7:2254–2256CrossRefGoogle Scholar
  3. 3.
    Reilly JJ, Wiswall RH Jr (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222CrossRefGoogle Scholar
  4. 4.
    van Vucht JHN, Kuijpers FA, Bruning HCAM (1970) Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Rep 25:133–140Google Scholar
  5. 5.
    Shaltiel D, Jacpb I, Davidov D (1977) Hydrogen absorption and desorption properties of AB2 Laves-phase pseudebinary compounds. J Less-Common Met 53:117–131CrossRefGoogle Scholar
  6. 6.
    Ishido Y, Nishimiya N, Suzuki Y (1977) Preparation and equilibrium study on ZrMn2Hx. Denki Kagaku 45:52–54Google Scholar
  7. 7.
    Bernauer O, Töpler J, Noréus D, Hempelmann R, Richter D (1989) Fundamentals and properties of some Ti/Mn based Laves phase hydrides. Int J Hydrogen Energy 14:187–200CrossRefGoogle Scholar
  8. 8.
    Zijlstra H, Westendorp FF (1969) Influence of hydrogen on the magnetic properties of SmCo5. Solid State Comm 7:857–859CrossRefGoogle Scholar
  9. 9.
    Kuijpers FA, van Mal HH (1971) Sorption hysteresis in the LaNi5-H and SmCo5-H systems. J Less-Common Met 23:395–398CrossRefGoogle Scholar
  10. 10.
    Nomura K, Uruno H, Ono S, Shinozuka H, Suda S (1985) Effects of lattice strain on the hysteresis of pressure-composition isotherms for the LaNi5-H2 system. J Less-Common Met 107:221–230CrossRefGoogle Scholar
  11. 11.
    Akiba E, Nomura K, Ono S (1987) A new hydride phase of LaNi5H3. J Less-Common Met 129:159–164CrossRefGoogle Scholar
  12. 12.
    Machida A, Higuchi K, Katayama Y, Sakaki K, Kim H, Nakamura Y (2015) Observation of transient structural changes on hydrogen absorption process of LaNi4.75Sn0.25 by time resolved X-ray diffraction. J Japan Inst Met Mater 79:124–130CrossRefGoogle Scholar
  13. 13.
    Reilly JJ, Wiswall RH Jr (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222CrossRefGoogle Scholar
  14. 14.
    Thompson P, Reilly JJ, Hastings JM (1989) The application of the Rietveld method to a highly strained material with microtwins: TiFeD1.9. J Appl Cryst 22:256–260CrossRefGoogle Scholar
  15. 15.
    Gavra Z, Mintz MH, Kimmel G, Hadari Z (1979) Allotropic transitions of magnesium nickel hydride (Mg2NiH4). Inorg Chem 18:3595–3597CrossRefGoogle Scholar
  16. 16.
    Zolliker P, Yvon K, Jorgensen JD, Rotella F (1986) Structural studies of the hydrogen storage material magnesium nickel hydride (Mg2NiH4). 2. Monoclinic low-temperature structure. Inorg Chem 25:3590–3593CrossRefGoogle Scholar
  17. 17.
    Zolliker P, Yvon K, Fischer P, Schefer J (1985) Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal pentahydrocobaltate(4−) (CoH5 4−) anions. Inorg Chem 24:4177–4180CrossRefGoogle Scholar
  18. 18.
    Kadir K, Sakai T, Uehara I (1997) Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J Alloys Compd 257:115–121CrossRefGoogle Scholar
  19. 19.
    Yamamoto T, Inui H, Yamaguchi M, Sato K, Fujitani S, Yonezu I, Nishio K (1997) Microstructures and hydrogen absorption/desorption properties of La-Ni alloys in the composition range of La-77.8 ∼ 83.2 at.%Ni. Acta Mater 45:5213–5221CrossRefGoogle Scholar
  20. 20.
    Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M (2000) Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J Alloys Compd 311:L5–L7CrossRefGoogle Scholar
  21. 21.
    Akiba E, Iba H (1998) Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6:461–470CrossRefGoogle Scholar
  22. 22.
    Papathanassopoulos K, Wenzl H (1982) Pressure-composition isotherms of hydrogen and deuterium in vanadium films measured with a vibrating quartz microbalance. J Phys F: Met Phys 12:1369–1381CrossRefGoogle Scholar
  23. 23.
    Furrer A, Fischer P, Halg W, Schlapbach L (1978) In: Andresen A, Maeland AJ (eds) Hydrides for energy storage, Pergamon, Oxford, pp.73–82Google Scholar
  24. 24.
    Thompson P, Reilly JJ, Corliss IM, Hastings JM, Hempelmann R (1986) The crystal structure of LaNi5D7. J Phys F 16:675–686Google Scholar
  25. 25.
    Percheron-Guegan A, Lartigue C, Achard JC, Germi P, Tasst F (1980) Neutron and X-ray diffraction profile analyses and structure of LaNi5, LaNi5−xAlx and LaNi5−xMnx intermetallics and their hydrides (deuterides). J Less-Common Met 74:1–12Google Scholar
  26. 26.
    Fruchart D, Soubeyroux JL, Hempelmann R (1984) Neutron diffraction in Ti1.2Mn1.8 deuteride: structural and magnetic aspects. J Less-Common Met 99:307–319Google Scholar
  27. 27.
    Didisheim JJ, Yvon K, Shaltiel D, Fischer P (1979) The distribution of the deuterium atoms in the deuterated hexagonal laves-phase ZrMn2D3. Solid Slate Commun 31:47–50Google Scholar
  28. 28.
    van Essen RM, Buschow KHJ (1980) Composition and hydrogen absorption of C14 type Zr-Mn compounds. Mater Res Bull 15:1149–1155Google Scholar
  29. 29.
    Fischer P, Schefer J, Yvon K, Schlapbach L, Riesterer T (1987) Orthorhombic structure of γ-TiFeD≈2. J Less-Common Met 129:39–45Google Scholar
  30. 30.
    Schefer J, Fischer P, Halg W, Stucki I, Schlapbach L, Didisheim JJ, Yvon K, Andresen AF (1980) New structure results for hydrides and deuterides of the hydrogen storage material Mg2Ni. J Less-Common Met 74:65–73Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations