Skip to main content

Fundamentals

  • Chapter
  • First Online:
Hydrogen Energy Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 3961 Accesses

Abstract

This chapter describes fundamental knowledge indispensable for hydride-based hydrogen storage, including the physical and chemical properties of hydrogen, phase diagrams of metal-hydrogen systems, hydrogen-material interaction, as well as thermodynamic stability and the reaction kinetics of hydrides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flanagan TB, Oates WA (1988) Thermodynamics of intermetallic compound-hydrogen systems. In: Schlapbach L (ed) Hydrogen in intermetallic compounds I. Springer, Berlin, pp 49–85

    Chapter  Google Scholar 

  2. Griessen R, Riesterer T (1988) Heat of formation models. In: Schlapbach L (ed) Hydrogen in intermetallic compounds I. Springer, Berlin, pp 219–284

    Chapter  Google Scholar 

  3. Lynch JF, Reilly JJ (1982) Behavior of H-LaNi5 solid solutions. J Less-Common Met 87:225–236

    Article  Google Scholar 

  4. Osumi Y, Suzuki H, Kato A, Oguro K, Nakane M (1981) Effect of metal-substitution on hydrogen storage properties for mischmetal-nickel alloys. Nippon Kagaku Kaishi 124:1493–1502

    Article  Google Scholar 

  5. Murray JJ, Post ML, Taylor JB (1980) Differential heat flow calorimetry of the hydrides of intermetallic compounds. J Less-Common Met 73:33–40

    Article  Google Scholar 

  6. Murray JJ, Post ML, Taylor JB (1983) The thermodynamics of the system CaNi5-H2 using differential heat conduction calorimetry. J Less-Common Met 90:65–73

    Article  Google Scholar 

  7. Post ML, Murray JJ, Taylor JB (1984) Metal hydride studies at the National Research Council of Canada. Int J Hydrogen Energy 9:137–145

    Article  Google Scholar 

  8. Post ML, Murray JJ, Grant DM (1989) The LaNi5—H2 System at T = 358 K: an investigation by heat-conduction calorimetry. Z Phys Chem N F 163:135–140

    Article  Google Scholar 

  9. Wenzl H, Lebsanft E (1980) Phase diagram and thermodynamic parameters of the quasibinary interstitial alloy Fe0.5Ti0.5Hx in equilibrium with hydrogen gas. J Phys F 10:2147–2156

    Article  Google Scholar 

  10. Murray JJ, Post ML, Taylor JB (1981) The thermodynamics of the LaNi5-H2 system by differential heat flow calorimetry I: Techniques; the α + β two-phase region. J Less-Common Met 80:201–209

    Google Scholar 

  11. Buschow KHJ, van Mal HH (1972) Phase relations and hydrogen absorption in the lanthanum-nickel system. J Less-Common Met 29:203–210

    Google Scholar 

  12. Mendelsohn (1977) LaNi5-xAlx is a versatile alloy system for metal hydride applications. Nature 269:45–47

    Google Scholar 

  13. Osumi Y, Suzuki H, Kato A, Nakane M, Miyake Y (1978) Absorption-desorption characteristics of hydrogen for mischmetal based alloys. Nihon Kagaku Kaishi 1472–1477 (in Japanese)

    Google Scholar 

  14. Reilly JJ, Wiswall (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222

    Google Scholar 

  15. Osumi Y, Suzuki H, Kato A, Nakane M, Miyake Y (1979) Absorption-desorption characteristics of hydrogen for titanium-cobalt alloys. Nihon Kagaku Kaishi 855–860 (in Japanese)

    Google Scholar 

  16. Gamo T, Moriwaki Y, Yanagihara N, Yamashita T, Iwaki T (1985) Formation and properties of titanium-manganese alloy hydrides. Int J Hydrogen Energy 10:39–47

    Google Scholar 

  17. Ishido Y, Nishimiya N, Suzuki Y (1977) Preparation and equilibrium study on ZrMn2Hx. Denki Kagaku 45:52–54

    Google Scholar 

  18. Shaltiel D, Jacob I, Davidov D (1977) Hydrogen absorption properties of AB2 Laves-phase pseudobinary compounds. J Less-Common Met 53:117–131

    Google Scholar 

  19. Chase MW Jr, Davis CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) J Phys Chem Ref Data 14, Suppl No 1:1266

    Google Scholar 

  20. Nomura K, Akiba E, Ono S, Suda S (1979) Kinteics of the reaction between Mg2Ni and H2. In: JIMIS-2 Hydrogen in Metals, Minakami, Japan. The Japan Institute of Metals, Sendai, pp 353–356

    Google Scholar 

  21. Sandrock GD, Murray JJ, Post ML, Taylor JB (1982) Hydrides and deuteride of CaNi5. Mat Res Bul 17:887–894

    Google Scholar 

  22. van Mal HH, Buschow KHJ, Miedcma AR (1974) Hydrogen absorption in LaNi5 and related compounds: experimental observations and their explanation. J Less-Common Met 35:65–76

    Article  Google Scholar 

  23. Didisheim JJ, Zolliker P, Yvon K, Fischer P, Schefer J, Gubelmann M, Williams AF (1984) Dimagnesium iron(II) hydride, Mg2FeH6, containing octahedral FeH 4-6 anions. Inorg Chem 23:1953–1957

    Article  Google Scholar 

  24. Zolliker P, Yvon K, Fischer P, Schefer J (1985) Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal pentahydrocobaltate(4-) (CoH 4-5 ) anions. Inorg Chem 24:4177–4180

    Article  Google Scholar 

  25. Flanagan TB (1978) Thermodynamics of metal, alloy and intermetallic/hydrogen systems. In: Andresen AF, Maeland AJ (eds) Hydrides for energy storage: proceedings of an international symposium, Geilo, August 1977. Oxford, Pergamon, pp 43–59

    Google Scholar 

  26. Rudman PS (1979) Hydrogen-diffusion-rate-limited hydriding and dehydriding kinetics. J Appl Phys 50:7195–7199

    Article  Google Scholar 

  27. Boulet JM, Gerard N (1983) The mechanism and kinetics of hydride formation in Mg-10 wt%Ni and CeMg12. J Less-Common Met 89:151–161

    Article  Google Scholar 

  28. Mintz MH, Bloch J (1985) Evaluation of the kinetics and mechanisms of hybriding reactions. Prog Solid State Chem 16:163–194

    Article  Google Scholar 

  29. Rudman PS (1983) Hydriding and dehydriding kinetics. J Less-Common Met 89:93–110

    Article  Google Scholar 

  30. Sharp JH, Brindley GW, Achar BNA (1966) Numerical data for some commonly used solid state reaction equations. J Am Ceram Soc 49:379–382

    Article  Google Scholar 

  31. Hancock JD, Sharp JH (1972) Method of comparing solid-state kinetic data and its application to the decomposition of Kaolinite, Brucite and BaCO3. J Am Ceram Soc 55:74–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuo Akiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Akiba, E. (2016). Fundamentals. In: Sasaki, K., Li, HW., Hayashi, A., Yamabe, J., Ogura, T., Lyth, S. (eds) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56042-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56042-5_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56040-1

  • Online ISBN: 978-4-431-56042-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics