Photocatalytic Water Splitting

  • Aleksandar StaykovEmail author
  • Stephen M. Lyth
  • Motonori Watanabe
Part of the Green Energy and Technology book series (GREEN)


This chapter deals with the topic of photocatalytic water splitting. Photosynthesis in nature is discussed leading into artificial photosynthesis in the lab. The basic principles of photocatalytic water splitting are introduced, followed by materials used for artificial photosynthesis, visible-light-driven photocatalysis, and dye-sensitized visible-light-driven photocatalysis, inorganic visible light-driven photocatalysis, and organic–inorganic hybrid systems.


Photocatalytic water splitting Artificial photosynthesis Photocatalysis Hydrogen production Renewable hydrogen production 


  1. 1.
    Ogden JM (1999) Prospects for building a hydrogen energy infrastructure. Ann Rev Energy Environ 24:227–279CrossRefGoogle Scholar
  2. 2.
    Bard AJ, Fox AM (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRefGoogle Scholar
  3. 3.
    Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Nielson JR, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996CrossRefGoogle Scholar
  4. 4.
    Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982CrossRefGoogle Scholar
  5. 5.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  6. 6.
    Yan H, Wang X, Yao M, Yao X (2013) Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog Nat Sci Mater Intern 23:402–407CrossRefGoogle Scholar
  7. 7.
    Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ Sci 2:364–386CrossRefGoogle Scholar
  8. 8.
    Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  9. 9.
    Yamada Y, Yasuda H, Tayagaki T, Kanemitsu Y (2009) Photocarrier recombination dynamics in highly excited SrTiO3 studied by transient absorption and photoluminescence spectroscopy. Appl Phys Lett 95:121112CrossRefGoogle Scholar
  10. 10.
    Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86CrossRefGoogle Scholar
  11. 11.
    Lehn JM, Sauvage JP, Ziessel R (1980) Photochemical water splitting continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate. Nouv J Chim 4:623–627Google Scholar
  12. 12.
    Yamaguti K, Sato S (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc, Faraday Trans 1(81):1237–1246CrossRefGoogle Scholar
  13. 13.
    Bamwenda GR, Tshbota S, Nakamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. J Photochem Photobiol A 89:177–189CrossRefGoogle Scholar
  14. 14.
    Iwase A, Kato H, Kudo A (2006) Nanosized Au particles as an efficient cocatalyst for photocatalytic overall water splitting. A Catal Lett 108:7–10CrossRefGoogle Scholar
  15. 15.
    Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun 543–544Google Scholar
  16. 16.
    Kawai T, Sakata T (1980) Photocatalytic decomposition of gaseous water over TiO2 and TiO2—RuO2 surfaces. Chem Phys Lett 72:87–89CrossRefGoogle Scholar
  17. 17.
    Inoue Y, Hayashi O, Sato K (1990) Photocatalytic activities of potassium-doped lead niobates and the effect of poling. J Chem Soc, Faraday Trans 86:2277–2282CrossRefGoogle Scholar
  18. 18.
    Iwase A, Kato H, Kudo A (2005) A novel photodeposition method in the presence of nitrate ions for loading of an iridium oxide cocatalyst for water splitting. Chem Lett 34:946–947CrossRefGoogle Scholar
  19. 19.
    Hara M, Waraksa C, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered Tris(2,2′-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem 104:5275–5280CrossRefGoogle Scholar
  20. 20.
    Sato J, Saito N, Yamada Y, Maeda K, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K, Inoue Y (2005) RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J Am Chem Soc 127:4150–4151Google Scholar
  21. 21.
    Honda K, Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  22. 22.
    Bard AJ (1980) Photoelectrochemistry. Science 207:139–144CrossRefGoogle Scholar
  23. 23.
    Kato H, Kudo A (2003) New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett 295:487–492CrossRefGoogle Scholar
  24. 24.
    Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569CrossRefGoogle Scholar
  25. 25.
    Kudo A, Kato H (2000) Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem Phys Lett 331:373–377CrossRefGoogle Scholar
  26. 26.
    Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089CrossRefGoogle Scholar
  27. 27.
    Iwase A, Kato H, Okutomi H, Kudo A (2004) Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chem Lett 33:1260–1261CrossRefGoogle Scholar
  28. 28.
    Bird RE, Hulstrom RK, Lewis LJ (1983) Terrestrial solar spectral data sets. Sol Energy 30:563–573CrossRefGoogle Scholar
  29. 29.
    Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41–54CrossRefGoogle Scholar
  30. 30.
    Xin G, Guo W, Ma T (2009) Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution. Appl Surf Sci 256:165–169CrossRefGoogle Scholar
  31. 31.
    Enea O, Bard AJ (1986) Photoredox Reactions at semiconductor particles incorporated into clays. CdS and. ZnS + CdS mixtures in colloidal montmorillonite suspensions. J Phys Chem 90:301–306CrossRefGoogle Scholar
  32. 32.
    Hirai T, Okubo H, Komasawa I (1999) Size-selective incorporation of CdS nanoparticles into mesoporous silica. J Phys Chem B 103:4228–4230CrossRefGoogle Scholar
  33. 33.
    Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRefGoogle Scholar
  34. 34.
    Hoffman AJ, Mills G, Yee H, Hoffmann MR (1992) Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J Phys Chem 96:5546–5552CrossRefGoogle Scholar
  35. 35.
    Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861CrossRefGoogle Scholar
  36. 36.
    Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753CrossRefGoogle Scholar
  37. 37.
    Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Electrochemistry (Tokyo, Jpn.) 70:463–465Google Scholar
  38. 38.
    Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem Commun 16:1698–1699Google Scholar
  39. 39.
    Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst (<600 nm). Chem Lett 7:736–737CrossRefGoogle Scholar
  40. 40.
    Yamasita D, Takata T, Hara M, Kondo JN, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ion 172:591–595CrossRefGoogle Scholar
  41. 41.
    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–8287CrossRefGoogle Scholar
  42. 42.
    Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K (2005) Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B 109:20504–20510CrossRefGoogle Scholar
  43. 43.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440:295CrossRefGoogle Scholar
  44. 44.
    Sun X, Maeda K, Faucheur ML, Teramura K, Domen K (2007) Preparation of (Ga1−xZnx) (N1−xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl Catal A 327:114–121CrossRefGoogle Scholar
  45. 45.
    Maeda K, Teramura K, Domen K (2008) Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light. J Catal 254:198–204CrossRefGoogle Scholar
  46. 46.
    Zhao J, Wu W, Sun J, Guo S (2013) Triplet photosensitizers: from molecular design to applications. Chem Soc Rev 42:5323–5351CrossRefGoogle Scholar
  47. 47.
    Tsubomura H, Matsumura M, Nomura Y, Amamiya T (1976) Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261:402–403CrossRefGoogle Scholar
  48. 48.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  49. 49.
    Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M (1981) Sustained water cleavage by visible light. J Am Chem Soc 103:6324–6329CrossRefGoogle Scholar
  50. 50.
    Houlding VH, Gratzel M (1983) Photochemical hydrogen generation by visible light. Sensitization of titanium dioxide particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696CrossRefGoogle Scholar
  51. 51.
    Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A 137:63–69CrossRefGoogle Scholar
  52. 52.
    Watanabe M, Hagiwara H, Iribe A, Ogata Y, Shiomi K, Staykov A, Ida S, Tanaka K, Ishihara T (2014) Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. J Mater Chem A 2:12952–12961CrossRefGoogle Scholar
  53. 53.
    Han WS, Wee KR, Kim HY, Pac C, Nabetani Y, Yamamoto D, Shimada T, Inoue H, Choi H, Cho K, Kang SO (2012) Hydrophilicity control of visible-light hydrogen evolution and dynamics of the charge-separated state in Dye/TiO2/Pt hybrid systems. Chem Eur J 18:15368–15381CrossRefGoogle Scholar
  54. 54.
    Lee J, Kwak J, Ko KC, Park JH, Ko JH, Park N, Kim E, Ryu DH, Ahn TK, Lee JY, Son SU (2012) Phenothiazine-based organic dyes with two anchoring groups on TiO2 for highly efficient visible light-induced water splitting. Chem Commun 48:11431–11433Google Scholar
  55. 55.
    Kim W, Tachikawa T, Majima T. Choi W (2009) Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dechlorination of CCl4. J Phys Chem C 113:10603–10609Google Scholar
  56. 56.
    Zhang LX, Veikko U, Mao J, Cai P, Peng T (2012) Visible-light-induced photocatalytic hydrogen production over binuclear Ru II—bipyridyl dye-sensitized TiO2 without noble metal. Chem Eur J 18:12103–12111CrossRefGoogle Scholar
  57. 57.
    Hara M, Waraksa CC, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered tris(2,2′-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem A 104:5275–5280CrossRefGoogle Scholar
  58. 58.
    Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore NL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927CrossRefGoogle Scholar
  59. 59.
    Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75CrossRefGoogle Scholar
  60. 60.
    Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 /I shuttle redox mediator under visible light irradiation. Chem Commun 23:2416–2417Google Scholar
  61. 61.
    Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-. J Phys Chem B 109:16052–16061CrossRefGoogle Scholar
  62. 62.
    Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K (2008) Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3-/I- shuttle redox mediator. Chem Phys Lett 452:120–123CrossRefGoogle Scholar
  63. 63.
    Abe R, Takata T, Sugihara H, Domenb K (2005) Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3 /I shuttle redox mediator. Chem Commun 3829–3831Google Scholar
  64. 64.
    Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868CrossRefGoogle Scholar
  65. 65.
    Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem Lett 33:1348–1349CrossRefGoogle Scholar
  66. 66.
    Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113:17536–17542CrossRefGoogle Scholar
  67. 67.
    Gratzel M (1999) The artificial leaf, bio-mimetic photocatalysis. Cattech 3:4–17Google Scholar
  68. 68.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  69. 69.
    Abe R, Shinmei K, Hara K, Ohtania B (2009) Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chem Commun 24:3577–3579Google Scholar
  70. 70.
    Hagiwara H, Ono N, Inoue T, Matsumoto H, Ishihara T (2006) Dye-sensitizer effects on a Pt/KTa(Zr)O3 catalyst for the photocatalytic splitting of water. Angew Chem Int Ed 45:1420–1422CrossRefGoogle Scholar
  71. 71.
    Hagiwara H, Inoue T, Kaneko K, Ishihara T (2009) Charge-transfer mechanism in Pt/KTa(Zr)O3 photocatalysts modified with porphyrinoids for water splitting. Chem Eur J 15:12862–12870CrossRefGoogle Scholar
  72. 72.
    Hagiwara H, Watanabe M, Daio T, Ida S, Ishihara T (2014) Modification effects of meso-hexakis(pentafluorophenyl)[26] hexaphyrin aggregates on the photocatalytic water splitting. Chem Commun 50:12515–12518Google Scholar
  73. 73.
    Zhang Y, Mao F, Yan H, Liu K, Cao H, Wua J, Xiao D (2015) A polymer–metal–polymer–metal heterostructure for enhanced photocatalytic hydrogen production. J Mater Chem A 3:109–115CrossRefGoogle Scholar
  74. 74.
    Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057CrossRefGoogle Scholar
  75. 75.
    Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Aleksandar Staykov
    • 1
    Email author
  • Stephen M. Lyth
    • 1
  • Motonori Watanabe
    • 1
  1. 1.International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu UniversityFukuokaJapan

Personalised recommendations