Skip to main content

Average Grain Size of Steels

  • Chapter
  • First Online:
  • 1798 Accesses

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

Abstract

This chapter reviews the EMAR application to determine the average grain size of carbon steels (Ogi et al. 1995) on the basis of the fourth-power frequency dependence of attenuation. The final results are favorably compared with the average of three-dimensional distribution from metallographic observations for various grades.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bhatia, A. B. (1959). Scattering of high-frequency sound waves in polycrystalline materials. The Journal of the Acoustical Society of America, 31, 16–23.

    Google Scholar 

  • Bhatia, A. B., & Moore, R. A. (1959). Scattering of high frequency sound waves in polycrystalline materials. II. The Journal of the Acoustical Society of America, 31, 1140–1141.

    Google Scholar 

  • Dubois, M., Militzer, M., Moreau, A., & Bussière, J. F. (2000). A new technique for the quantitative real-time monitoring of austenite grain growth in steel. Scripta Materialia, 42, 867–874.

    Article  Google Scholar 

  • Hall, E. O. (1970). Yield Point Phenomena in Metals and Alloys. New York: Plenum Press.

    Book  Google Scholar 

  • Klinman, R., & Stephenson, E. T. (1981). Ultrasonic prediction of grain-size and mechanical-properties in plain carbon-steel. Materials Evaluation, 39, 116–1120.

    Google Scholar 

  • Levy, S., & Truell, R. (1953). Ultrasonic attenuation in magnetic single crystals. Reviews of Modern Physics, 25, 140–145.

    Article  ADS  Google Scholar 

  • Mason, W. P. (1958). Physical Acoustics and Properties of Solids. Princeton: Van Nostrand.

    Google Scholar 

  • Matsuura, K., & Itoh, Y. (1991). Estimation of three-dimensional grain size distribution in polycrystalline material. Materials Transactions JIM, 32, 1042–1047.

    Article  Google Scholar 

  • Nagy, P. B., & Rose, J. (1993). Surface roughness and the ultrasonic detection of subsurface scatterers. Journal of Applied Physics, 73, 566–580.

    Article  ADS  Google Scholar 

  • Nicoletti, D., Bilgutay, N., & Onaral, B. (1992). Power-law relationship between the dependence of ultrasonic attenuation on wavelength and the grain size distribution. The Journal of the Acoustical Society of America, 91, 3278–3284.

    Google Scholar 

  • Ogi, H., Hirao, M., & Honda, T. (1995). Ultrasonic attenuation and grain size evaluation using electromagnetic acoustic resonance. The Journal of the Acoustical Society of America, 98, 458–464.

    Google Scholar 

  • Papadakis, E. P. (1961). Grain-size distribution in metals and its influence on ultrasonic attenuation measurements. The Journal of the Acoustical Society of America, 33, 1616–1621.

    Google Scholar 

  • Papadakis, E. P. (1963). From micrograph to grain-size distribution with ultrasonic applications. The Journal of Acoustical Society of America, 35, 1586–1594.

    Google Scholar 

  • Papadakis, E. P. (1965). Ultrasonic attenuation caused by scattering in polycrystalline metals. The Journal of Acoustical Society of America, 37, 711–717.

    Google Scholar 

  • Papadakis, E. P. (1966). Ultrasonic diffraction loss and phase change in anisotropic materials. The Journal of Acoustical Society of America, 40, 863–876.

    Google Scholar 

  • Rayleigh, L. (1894). The Theory of Sound. London: Macmillan.

    MATH  Google Scholar 

  • Smith, L. (1987). Ultrasonic materials characterization. NDT&E International, 20, 43–48.

    Google Scholar 

  • Truell, R., Elbaum, C., & Chick, B. B. (1969). Ultrasonic Methods in Solid State Physics. New York: Academic Press.

    Google Scholar 

  • Ying, C. F., & Truell, R. (1956). Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. Journal of Applied Physics, 27, 1086–1097.

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Hirao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Hirao, M., Ogi, H. (2017). Average Grain Size of Steels. In: Electromagnetic Acoustic Transducers. Springer Series in Measurement Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56036-4_15

Download citation

Publish with us

Policies and ethics