Skip to main content

Synthesis of Functional Tertiary Lymphoid Organs

Abstract

The regeneration of functional immune organ will be one of major focus in future immunology research. It will be an useful tool which induces efficient immune responses in the body on demand and offers effective ways to restore the immune status and treat uncontrollable obstinate diseases such as cancer, autoimmune diseases, severe infection and immuno-insufficiency/deficiency caused by tissue damages, abnormality, primary defect and aging. Artificially synthesized lymphoid organs may also provide us with a highly informative method not only for clinical aim but also basic study on the development and functions of immunological tissues and organs. We first reported successful generation of artificially-constructed lymph node-like tertiary lymphoid tissues at ectopic sites in mouse by applying certain stromal cell lines (Suematsu S, Watanabe T. Nat Biotechnol 22(12):1539–1545, 2004; Okamoto N et al. J Clin Invest 117(4):997–1007, 2007; Kobayashi Y, Watanabe T. Trends Immunol 31(11):422–428, 2010). They showed a remarkable ability to induce immune responses upon antigen stimulation, especially when transplanted into naïve or immune-compromised hosts. In this review, we discuss about the rationale and method for the synthesis of functional tertiary lymph node-like lymphoid tissues in mouse. Especially, we discuss here on the method with applying only soluble factors but without using any stromal cell, that enables proper accumulation and functional organization of immune cells in grafts.

Keywords

  • Stromal Cell
  • Lymphoid Tissue
  • Mesenchymal Stromal Cell
  • Collagen Sponge
  • Follicular Dendritic Cell

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-56027-2_7
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-56027-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3

Abbreviations

SLO:

secondary lymphoid organs

TLO:

tertiary lymphoid organs

LN:

lymph node

PP:

Payer’s patches

DC:

dendritic cells

FDC:

follicular dendritic cells

FRC:

fibroblastic reticular cells

HEV:

high endothelial venules

RIP- LTα:

rat insulin promotor expressing Lta (lymphotoxin-α) gene

LTi:

lymphoid tissue inducer

LTo:

lymphoid tissue organizer

LTRβ:

lymphotoxin receptor-beta

RA:

retinoic acid

VEGFc:

vessel endothelial growth factor

Aire:

autoimmune regulator

MDSCs:

myeloid-derived suppressor cells

Treg cells:

regulatory T cells

HSPGs:

heparan sulfate proteoglycans

HS:

heparan sulfate

TES:

tissue-engineered spleen

GC:

germinal center

aAPC:

artificial antigen-presenting cells

aLN:

artificial lymph nodes

iPS:

induced pluripotent stem cells

References

  • Aberle T, Franke K, Rist E et al (2014) Cell-type specific four-component hydrogel. PLoS One 9(1):e86740

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Akita M, Murata E, Merker HJ et al (1997) Morphology of capillary-like structures in a three-dimensional aorta/collagen gel culture. Ann Anat 179(2):127–136

    CAS  PubMed  CrossRef  Google Scholar 

  • Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatorydiseases. Nat Rev Immunol 6(3):205–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Ansel KM, Ngo VN, Hyman PL et al (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406(6793):309–314

    CAS  PubMed  CrossRef  Google Scholar 

  • Bai Z, Hayasaka H, Kobayashi M et al (2000) CXC chemokine ligand 12 promotes CCR7-dependent naive T cell trafficking to lymph nodes and Peyer’s patches. J Immunol 182(3):1287–1295

    CrossRef  Google Scholar 

  • Benezech C, White A, Mader E et al (2010) Ontogeny of stromal organizer cells during lymph node developmennt. J Immunol 184:4521–4530

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Benezech C, Mader E, Desanti G et al (2012) Lymphotoxin-β receptor signaling through NF-κB2-RelB pathway reprogams adipocyte precursors as lymph node stromal cells. Immunity 37:1–14

    CrossRef  CAS  Google Scholar 

  • Benezech C, Nayar S, Finney BA et al (2014) CLEC-2 is required for development and maintenance of lymph nodes. Blood 123(20):3200–3206

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bertozzi CC, Schmater AA, Mericko P et al (2010) Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116(4):661–670

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Buettner M, Pabst R, Bode U (2010) Stromal cell heterogeneity in lymphoid organs. Trends Immunol 31(2):80–86

    CAS  PubMed  CrossRef  Google Scholar 

  • Butler MO, Lee JS, Ansen S et al (2007) Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res 13(6):1857–1867

    CAS  PubMed  CrossRef  Google Scholar 

  • Chai Q, Onder L, Scandella E et al (2013) Maturation of lymph node fibroblastic reticular cells from myofibroblastic precuosors is critical for antiviral immunity. Immunity 38:1–12

    CrossRef  CAS  Google Scholar 

  • Chen RR, Silva EA, Yuen WW et al (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24(2):258–264

    PubMed  CrossRef  CAS  Google Scholar 

  • Chyou S, Ekland EH, Carpenter AC (2008) Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J Immunol 181(6):3887–3896

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cohen JN, Guidi CJ, Tewalt EF et al (2010) Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 207(4):681–688

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cremasco V, Woodruff MC, Onder L et al (2014) B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol 15:973–981

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cupedo T, Crellin NK, Papazian N et al (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 10(1):66–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Cupedo T, Stroock A, Coles M et al (2012) Application of tissue engineering to the immune system: development of artificial lymph nodes. Front Immunol 3:343. doi:10.3389/fimmu.2012.00343

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Danner R, Chaudhari SN, Rosenberger J et al (2011) Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RγcKO mice is critical for development and function of human T and B cells. PLoS One 6(5):e19826. doi:10.1371/journal.pone.0019826

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dejardin E, Droin NM, Delhase M et al (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17(4):525–535

    CAS  PubMed  CrossRef  Google Scholar 

  • Dieu-Nosjean M-C, Goc J, Giraldo NA et al (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580

    CAS  PubMed  CrossRef  Google Scholar 

  • Drayton DL, Ying X, Lee J (2003) Ectopic LT alpha beta directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med 197(9):1153–1163

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7(4):344–353

    CAS  PubMed  CrossRef  Google Scholar 

  • Eberl G, Marmon S, Sunshine MJ et al (2004) An essential function for the nuclear receptor RORγ (t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5(1):64–73

    CAS  PubMed  CrossRef  Google Scholar 

  • Evans I, Kim MY (2009) Involvement of lymphoid inducer cells in the development of secondary and tertiary lymphoid structure. BMB Rep 42(4):189–193

    CAS  PubMed  CrossRef  Google Scholar 

  • Fan L, Reilly CR, Luo Y et al (2000) Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 164(8):3955–3959

    CAS  PubMed  CrossRef  Google Scholar 

  • Flavell RA, Sanjabi S, Wrzesinski SH et al (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 10(8):554–567

    CAS  PubMed  CrossRef  Google Scholar 

  • Fletcher AL, Lukacs-Kornek V, Reynoso ED et al (2010) Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J Exp Med 207(4):689–697

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fletcher AL, Malhotra D, Acton SE et al (2011) Reproducible isolation of lymph node stromal cells reveals site- dependent differences in fibroblastic reticular cells. Front Immunol. doi:10.3389/fimmu.2011.00035

  • Fu Y, Chaplin D (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433

    CAS  PubMed  CrossRef  Google Scholar 

  • Fukuyama S, Nagatake T, Kim DY et al (2006) Cutting edge: uniqueness of lymphoid chemokine requirement for the initiation and maturation of nasopharynx-associated lymphoid tissue organogenesis. J Immunol 177(7):4276–4280

    CAS  PubMed  CrossRef  Google Scholar 

  • Geurtsvankessel CH, Willart MA, Bergen IM et al (2009) Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J Exp Med 206(11):2339–2349

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Giese C, Demmler CD, Ammer R et al (2006) A human lymph node in vitro – challenges and progress. Artif Organs 30(10):803–808

    CAS  PubMed  CrossRef  Google Scholar 

  • Glanville SH, Bekiaris V, Jenkinson EJ et al (2009) Transplantation of embryonic spleen tissue reveals a role for adult non-lymphoid cells in initiating lymphoid tissue organization. Eur J Immunol 39(1):280–289

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Grabner R, Lotzer K, Dopping S et al (2009) Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice. J Exp Med 206(1):233–248

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224

    CAS  PubMed  CrossRef  Google Scholar 

  • Grikscheit TC, Sala FG, Ogilvie J et al (2008) Tissue-engineered spleen protects against overwhelming pneumococcal sepsis in a rodent model. J Surge Res 149(2):214–218

    CAS  CrossRef  Google Scholar 

  • Hadamitzky C, Spohr H, Debertin AS et al (2010) Age-dependent histoarchitectural changes in human lymph nodes: an underestimated process with clinical relevance? J Anat 216(5):556–562

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hammerschmidt SI, Ahrendt M, Bode U et al (2008) Stromal mesenteric lymph nodecells are essential for the generation of gut-homing T cells in vivo. J Exp Med 205(11):2483–2490

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hjelmstrom P, Fjell J, Nakagawa T et al (2000) Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am J Pathol 156(4):1133–1138

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hori Y, Stern PJ, Hynes RO et al (2009) Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 30(35):6757–6767

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hu D, Mohanta SK, Yin C et al (2015) Artery teriary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 42:1100–1115

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ishikawa F, Yasukawa M, Lyons B et al (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 106(5):1565–1573

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182

    CAS  PubMed  CrossRef  Google Scholar 

  • Iwata M, Hirakiyama A, Eshima Y et al (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21(4):527–538

    CAS  PubMed  CrossRef  Google Scholar 

  • Jaiswal S, Smith K, Ramirez A et al (2015) Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice. Exp Biol Med 240(1):67–78

    CrossRef  CAS  Google Scholar 

  • Johnson Z, Proudfoot AE, Handel TM (2005) Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev 16(6):625–636

    CAS  PubMed  CrossRef  Google Scholar 

  • Kalamajski S, Aspberg A, Oldberg A (2007) The decorin sequence SYIRIADTNIT binds collagen type I. J Biol Chem 282(22):16062–16067

    CAS  PubMed  CrossRef  Google Scholar 

  • Katakai T, Hara T, Lee JH et al (2004) A novel reticular stromal structure in lymph node cortex; an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol 16(8):1133–1142

    CAS  PubMed  CrossRef  Google Scholar 

  • Kawabuchi M, Nakamura K, Hirata K (1996) Morphological study of thymus stromal cells (TEL-2 cell) which play a role in the elimination of double positive immature thymocytes by phagocytosis. Anat Rec 244(3):271–283

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim D, Mebius RE, Macmicking JD et al (2000) Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med 192(10):1467–1478

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim MY, Mcconnell FM, Gaspal FM et al (2007) Function of CD4+CD3- cells in relation to B- and T-zone stroma in spleen. Blood 109(4):1602–1610

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim MY, Kim KS, Mcconnell F, Lane P (2009) Lymphoid tissue inducer cells: architects of CD4 immune responses in mice and men. Clin Exp Immunol 157(1):20–26

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kobayashi Y, Watanabe T (2010) Synthesis of artificial lymphoid tissue with immunological function. Trends Immunol 31(11):422–428

    CAS  PubMed  CrossRef  Google Scholar 

  • Kobayashi S, Miura H, Shibuya H et al (2013) A distinct human CD4+ T cell subset that secretes CXCL13 in rheumatoid synovitis. Arthritis Rheum 65:3063–3072

    CAS  PubMed  CrossRef  Google Scholar 

  • Krautler NJ, Kana V, Kranich J et al (2012) Follicular Dendritic Cells emerge from ubiquitous perivascular precursors. Cell 150:194–206

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kuzin I, Sun H, Moshkani S et al (2011) Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor. Biotechnol Bioeng 108:1430–1440

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lane P, Kim M-Y, Withers D et al (2008) Lymphoid tissue inducer cells in adaptive CD4 T cell dependent responses. Semin Immunol 20:159–163

    CAS  PubMed  CrossRef  Google Scholar 

  • Legrand N, Ploss A, Balling R et al (2009) Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 6(1):5–9

    CAS  PubMed  CrossRef  Google Scholar 

  • Lotzer K, Dopping S, Connert S et al (2010) Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin beta-receptor NF-kappaB signaling. Arterioscler Thromb Vasc Biol 30(3):395–402

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Luther SA, Bidgol A, Hargreaves DC et al (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169(1):424–433

    CAS  PubMed  CrossRef  Google Scholar 

  • Luther SA, Ansel KM, Cyster JG (2003) Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 197(9):1191–1198

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    CAS  PubMed  CrossRef  Google Scholar 

  • Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518

    CAS  PubMed  CrossRef  Google Scholar 

  • Manzo A, Bugatti S, Caporali R et al (2007) CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. Am J Pathol 171(5):1549–1562

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mebius R (2007) Organogenesis of lymphoid tissues. Nat Rev Immunol 3(4):292–303

    CrossRef  CAS  Google Scholar 

  • Meier D, Bornmann C, Chappaz S (2007) Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26(5):643–654

    CAS  PubMed  CrossRef  Google Scholar 

  • Molenaar R, Greuter M, Van Der Marel AP et al (2009) Lymph node stromal cells support dendritic cell-induced gut-homing of T cells. J Immunol 183(10):6395–6402

    CAS  PubMed  CrossRef  Google Scholar 

  • Mueller SN, Ahmed R (2008) Lymphoid stroma in the initiation and control of immune responses. Immunol Rev 224:284–294

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakashima M, Mori K, Maeda K, Kishi H et al (1990) Selective elimination of double-positive immature thymocytes by a thymic epithelial cell line. Eur J Immunol 20(1):47–53

    CAS  PubMed  CrossRef  Google Scholar 

  • Nasr IW, Reel M, Oberbarnscheidt MH et al (2007) Tertiary lymphoid tissues generate effector and memory T cells that lead to allograft rejection. Am J Transplant 7(5):1071–1079

    CAS  PubMed  CrossRef  Google Scholar 

  • Neyt K, Perros F, GeurtsvanKessel CH et al (2012) Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 33(6):297–305

    CAS  PubMed  CrossRef  Google Scholar 

  • Niklason LE, Gao J, Abbott WM et al (1999) Functional arteries grown in vitro. Science 284(5413):489–493

    CAS  PubMed  CrossRef  Google Scholar 

  • Nojima T, Haniuda K, Moutai T et al (2011) In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nat Commun. doi:10.1038/ncomms1475

  • Okamoto N, Chihara R, Shimizu C et al (2007) Artificial lymph nodes induce potent secondary immune responses in naive and immunodeficient mice. J Clin Invest 117(4):997–1007

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pan WR, Suami H, Taylor GI (2008) Senile changes in human lymph nodes. Lymphat Res Biol 6(2):77–83

    PubMed  CrossRef  Google Scholar 

  • Peduto L, Dulauroy S, Lochner M et al (2009) Inflammation recapitulates the ontogeny of lymphoid stromal cells. J Immunol 182(9):5789–5799

    CAS  PubMed  CrossRef  Google Scholar 

  • Perez A, Grikscheit TC, Blumberg RS et al (2002) Tissue-engineered small intestine: ontogeny of the immune system. Transplantation 74(5):619–623

    CAS  PubMed  CrossRef  Google Scholar 

  • Randall TD, Carragher DM, Rangel-Moreno J (2008) Development of secondary lymphoid organs. Annu Rev Immunol 26:627–650

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Reif K, Ekland EH, Ohl L et al (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416(6876):94–99

    PubMed  CrossRef  Google Scholar 

  • Reijmers RM, Vondenhoff MF, Roozendaal R et al (2010) Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase. J Immunol 184(7):3656–3664

    CAS  PubMed  CrossRef  Google Scholar 

  • Richardson TP, Peters MC, Ennett AB et al (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodgers KD, San Antonio JD, Jacenko O (2008) Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 237(10):2622–2642

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roozendaal R, Mebius RE (2011) Stromal cell-immune cell interactions. Annu Rev Immunol 29:23–43

    CAS  PubMed  CrossRef  Google Scholar 

  • Ruddle NH, Akirav EM (2009) Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J Immunol 183(4):2205–2212

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Saito Y, Uchida N, Tanaka S et al (2010) Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 28(3):275–280

    CAS  PubMed  Google Scholar 

  • Salomonsson S, Jonsson MV, Skarstein K et al (2003) Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum 48(11):3187–3201

    CAS  PubMed  CrossRef  Google Scholar 

  • Shi K, Hayashida K, Kaneko M et al (2001) Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol 166(1):650–655

    CAS  PubMed  CrossRef  Google Scholar 

  • Shields JD, Kourtis IC, Tomei AA et al (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328:749–752

    CAS  PubMed  CrossRef  Google Scholar 

  • Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477–6489

    CAS  PubMed  CrossRef  Google Scholar 

  • Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7(2):118–130

    CAS  PubMed  CrossRef  Google Scholar 

  • Shultz LD, Saito Y, Najima Y et al (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma (null) humanized mice. Proc Natl Acad Sci U S A 107(29):13022–13027

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shultz LD, Brehm MA, Garcia-Matinez JV et al (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stachowiak AN, Irvine DJ (2008) Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J Biomed Mater Res A 85(3):815–828

    PubMed  CrossRef  CAS  Google Scholar 

  • Stott DI, Hiepe F, Hummel M et al (1998) Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren’s syndrome. J Clin Invest 102(5):938–946

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Suematsu S, Watanabe T (2004) Generation of a synthetic lymphoid tissue-like organoid in mice. Nat Biotechnol 22(12):1539–1545

    CAS  PubMed  CrossRef  Google Scholar 

  • Sun Z, Unutmaz D, Zou YR et al (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288(5475):2369–2373

    CAS  PubMed  CrossRef  Google Scholar 

  • Sun Q, Chen RR, Shen Y (2005) Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm Res 22(7):1110–1116

    CAS  PubMed  CrossRef  Google Scholar 

  • Takebe T, Sekine K, Enomura M et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–485

    CAS  PubMed  CrossRef  Google Scholar 

  • Takebe T, Enomura M, Yoshizawa E et al (2015) Vascularized and complex organ buds from diverse tissues via mesenchymal cell-derived condensation. Cell Stem Cell 16:556–565

    CAS  PubMed  CrossRef  Google Scholar 

  • Takemura S, Braun A, Crowson C et al (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167(2):1072–1080

    CAS  PubMed  CrossRef  Google Scholar 

  • Tan J, Watanabe T (2014) Murine spleen tissue regeneration from neonatal spleen capsule requires lymphotoxin priming of stromal cells. J Immunol 193:1194–1203

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Teng YD, Lavik EB, Qu X et al (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99(5):3024–3029

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Thaunat O, Field AC, Dai J et al (2005) Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc Natl Acad Sci U S A 102(41):14723–14728

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Thomas JA, Willcox HN, Newsom-Davis J (1982) Immunological studies of the thymus in myasthenia gravis. Correction with clinical state and thymocyte culture responses. J Neuroimmunol 3(4):319–335

    CAS  PubMed  CrossRef  Google Scholar 

  • Thompson ED, Enriquez HL, Fu YX et al (2010) Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med 207(8):1791–1804

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tomei AA, Siegert S, Britschgi MR et al (2009) Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J Immunol 183(7):4273–4283

    CAS  PubMed  CrossRef  Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L et al (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667):104–107

    CAS  PubMed  CrossRef  Google Scholar 

  • Ugel S, Zoso A, De Santo C et al (2009) In vivo administration of artificial antigen-presenting cells activates low-avidity T cells for treatment of cancer. Cancer Res 69(24):9376–9384

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Van De Pavert SA, Olivier BJ, Goverse G et al (2009) Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol 10(11):1193–1199

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Vondenhoff MF, Greuter M, Goverse G et al (2009) LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J Immunol 182(9):5439–5445

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Weiss JM, Cufi P, Le Panse R et al (2013) The thymus in autoimmune Myasthenia Gravis: paradigm for a tertiary lymphoid organ. Rev Neurol (Paris) 169(8):640–649

    CrossRef  Google Scholar 

  • Willfuhr KU, Westermann J, Pabst R (1992) Splenic autotransplantation provides protection against fatal sepsis in young but not in old rats. J Pediatr Surge 27(9):1207–1212

    CAS  CrossRef  Google Scholar 

  • Yokota Y, Mansouri A, Mori S (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    CAS  PubMed  CrossRef  Google Scholar 

  • Young CL, Adamson TC 3rd, Vaughan JH et al (1984) Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum 27(1):32–39

    CAS  PubMed  CrossRef  Google Scholar 

  • Yu X, Bellamkonda RV (2003) Tissue-engineered scaffolds are effective alternatives to autografts for bridging peripheral nerve gaps. Tissue Eng 9(3):421–430

    CAS  PubMed  CrossRef  Google Scholar 

  • Yu X, Botchwey EA, Levine EM et al (2004) Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci U S A 101(31):11203–11208

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zeng M, Palardini M, Engram JC et al (2012) Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution. Blood 120(9):1856–1867

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhang L, Kovalev GI, Su L (2007) HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood 109(7):2978–2981

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research on Priority Areas from MEXT, Japan (Grant No. 24111009)

Disclosure

Authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kobayashi, Y., Kato, K., Nakamura, M., Watanabe, T. (2016). Synthesis of Functional Tertiary Lymphoid Organs. In: Watanabe, T., Takahama, Y. (eds) Synthetic Immunology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56027-2_7

Download citation