Advertisement

Dendritic Cell Immunoreceptor (DCIR): An ITIM-Harboring C-Type Lectin Receptor

  • Tomonori KaifuEmail author
  • Yoichiro Iwakura
Chapter

Abstract

C-type lectin receptors (CLRs) have been recognized as one of the pattern recognition receptors that trigger immune responses against pathogens. Dendritic cell immunoreceptor (DCIR) is a type II membrane protein that contains an extracellular carbohydrate recognition domain (CRD) and a long cytoplasmic tail with an immunoreceptor tyrosine-based inhibition motif (ITIM). Only one molecular species is identified in humans (DCIR), while four family molecules (DCIR1-4) are present in mice. Human DCIR and mouse DCIR1 dampen immune responses through ITIM-mediated reaction. DCIR binds mannose and fucose and also pathogenic organisms, but the structure of the ligand carbohydrates still remains to be determined. DCIR1 is important for the homeostasis of the immune system, and the deficiency causes autoimmune diseases. DCIR also acts as an attachment factor for HIV in dendritic cells and HIV-infected T cells. DCIR1 is also implicated in the pathogenesis of mosquito-transmitted virus and protozoan infections. This chapter highlights the roles of human and mouse DCIR in immune responses and immune homeostasis revealed by in vitro cell-based studies as well as in vivo gene-depleted mouse analyses.

Keywords

C-type lectins HIV Phosphatases ITIM Homeostasis Bone metabolism 

References

  1. Ahrens S et al (2012) F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36:635–645. doi: 10.1016/j.immuni.2012.03.008 CrossRefPubMedGoogle Scholar
  2. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV (2008) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 105:19571–19578. doi: 10.1073/pnas.0810163105 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bates EE et al (1999) APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. J Immunol 163:1973–1983PubMedGoogle Scholar
  4. Bergman MP et al (2004) Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J Exp Med 200:979–990. doi: 10.1084/jem.20041061 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bloem K et al (2013) Ligand binding and signaling of dendritic cell immunoreceptor (DCIR) is modulated by the glycosylation of the carbohydrate recognition domain. PLoS One 8:e66266. doi: 10.1371/journal.pone.0066266 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bloem K et al (2014) DCIR interacts with ligands from both endogenous and pathogenic origin. Immunol Lett 158:33–41. doi: 10.1016/j.imlet.2013.11.007 CrossRefPubMedGoogle Scholar
  7. Bonifaz LC et al (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824. doi: 10.1084/jem.20032220 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boyington JC et al (1999) Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors. Immunity 10:75–82CrossRefPubMedGoogle Scholar
  9. Carter RW, Thompson C, Reid DM, Wong SY, Tough DF (2006) Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J Immunol 177:2276–2284CrossRefPubMedGoogle Scholar
  10. de Witte L et al (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13:367–371. doi: 10.1038/nm1541 CrossRefPubMedGoogle Scholar
  11. Dudziak D et al (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315:107–111. doi: 10.1126/science.1136080 CrossRefPubMedGoogle Scholar
  12. Eklow C et al (2008) Cellular distribution of the C-type II lectin dendritic cell immunoreceptor (DCIR) and its expression in the rheumatic joint: identification of a subpopulation of DCIR+ T cells. Ann Rheum Dis 67:1742–1749. doi: 10.1136/ard.2007.076976 CrossRefPubMedGoogle Scholar
  13. Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2:77–84. doi: 10.1038/nri723 CrossRefPubMedGoogle Scholar
  14. Florentin J et al (2012) HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells. Blood 120:4544–4551. doi: 10.1182/blood-2012-02-413286 CrossRefPubMedGoogle Scholar
  15. Flornes LM et al (2004) Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 56:506–517. doi: 10.1007/s00251-004-0714-x CrossRefPubMedGoogle Scholar
  16. Fujikado N, Saijo S, Iwakura Y (2006) Identification of arthritis-related gene clusters by microarray analysis of two independent mouse models for rheumatoid arthritis. Arthritis Res Ther 8:R100. doi: 10.1186/ar1985 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fujikado N et al (2008) Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 14:176–180. doi: 10.1038/nm1697 CrossRefPubMedGoogle Scholar
  18. Guo J et al (2012) A replication study confirms the association of dendritic cell immunoreceptor (DCIR) polymorphisms with ACPA – negative RA in a large Asian cohort. PLoS One 7:e41228. doi: 10.1371/journal.pone.0041228 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hsu TL et al (2009) Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins. J Biol Chem 284:34479–34489. doi: 10.1074/jbc.M109.065961 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huang X et al (2001) Cloning and characterization of a novel ITIM containing lectin-like immunoreceptor LLIR and its two transmembrane region deletion variants. Biochem Biophys Res Commun 281:131–140. doi: 10.1006/bbrc.2001.4322 CrossRefPubMedGoogle Scholar
  21. Hunger RE et al (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 113:701–708. doi: 10.1172/JCI19655 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hutter J et al (2014) Role of the C-type lectin receptors MCL and DCIR in experimental colitis. PLoS One 9:e103281. doi: 10.1371/journal.pone.0103281 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ishikawa E et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888. doi: 10.1084/jem.20091750 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jin W et al (2014) DC-SIGN plays a stronger role than DCIR in mediating HIV-1 capture and transfer. Virology 458–459:83–92. doi: 10.1016/j.virol.2014.04.016 CrossRefPubMedGoogle Scholar
  25. Kanazawa N et al (2002) DCIR acts as an inhibitory receptor depending on its immunoreceptor tyrosine-based inhibitory motif. J Investig Dermatol 118:261–266. doi: 10.1046/j.0022-202x.2001.01633.x CrossRefPubMedGoogle Scholar
  26. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673. doi: 10.1126/science.1129594 CrossRefPubMedGoogle Scholar
  27. Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20. doi: 10.1196/annals.1443.020 CrossRefPubMedGoogle Scholar
  28. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461. doi: 10.3389/fimmu.2014.00461 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kerscher B, Willment JA, Brown GD (2013) The Dectin-2 family of C-type lectin-like receptors: an update. Int Immunol 25:271–277. doi: 10.1093/intimm/dxt006 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Klechevsky E et al (2010) Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood 116:1685–1697. doi: 10.1182/blood-2010-01-264960 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lambert AA, Gilbert C, Richard M, Beaulieu AD, Tremblay MJ (2008) The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood 112:1299–1307. doi: 10.1182/blood-2008-01-136473 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lambert AA, Imbeault M, Gilbert C, Tremblay MJ (2010) HIV-1 induces DCIR expression in CD4+ T cells. PLoS Pathog 6:e1001188. doi: 10.1371/journal.ppat.1001188 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lambert AA, Barabe F, Gilbert C, Tremblay MJ (2011) DCIR-mediated enhancement of HIV-1 infection requires the ITIM-associated signal transduction pathway. Blood 117:6589–6599. doi: 10.1182/blood-2011-01-331363 CrossRefPubMedGoogle Scholar
  34. Lee RT et al (2011) Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobiology 21:512–520. doi: 10.1093/glycob/cwq193 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Long KM et al (2013) Dendritic cell immunoreceptor regulates Chikungunya virus pathogenesis in mice. J Virol 87:5697–5706. doi: 10.1128/JVI.01611-12 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lorentzen JC et al (2007) Association of arthritis with a gene complex encoding C-type lectin-like receptors. Arthritis Rheum 56:2620–2632. doi: 10.1002/art.22813 CrossRefPubMedGoogle Scholar
  37. Maglinao M, Klopfleisch R, Seeberger PH, Lepenies B (2013) The C-type lectin receptor DCIR is crucial for the development of experimental cerebral malaria. J Immunol 191:2551–2559. doi: 10.4049/jimmunol.1203451 CrossRefPubMedGoogle Scholar
  38. Maruhashi T et al (2015) DCIR maintains bone homeostasis by regulating IFN-gamma production in T cells. J Immunol 194:5681–5691. doi: 10.4049/jimmunol.1500273 CrossRefPubMedGoogle Scholar
  39. Massoud AH et al (2012) Intravenous immunoglobulin attenuates airway inflammation through induction of forkhead box protein 3-positive regulatory T cells. J Allergy Clin Immunol 129:1656–1665. doi: 10.1016/j.jaci.2012.02.050, e1653CrossRefPubMedGoogle Scholar
  40. Massoud AH et al (2014) Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J Allergy Clin Immunol 133:853–863. doi: 10.1016/j.jaci.2013.09.029, e855CrossRefPubMedGoogle Scholar
  41. Meyer-Wentrup F et al (2008) Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-alpha production. Blood 111:4245–4253. doi: 10.1182/blood-2007-03-081398 CrossRefPubMedGoogle Scholar
  42. Meyer-Wentrup F et al (2009) DCIR is endocytosed into human dendritic cells and inhibits TLR8-mediated cytokine production. J Leukoc Biol 85:518–525. doi: 10.1189/jlb.0608352 CrossRefPubMedGoogle Scholar
  43. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89CrossRefPubMedGoogle Scholar
  44. Richard M, Veilleux P, Rouleau M, Paquin R, Beaulieu AD (2002) The expression pattern of the ITIM-bearing lectin CLECSF6 in neutrophils suggests a key role in the control of inflammation. J Leukoc Biol 71:871–880PubMedGoogle Scholar
  45. Richard M, Thibault N, Veilleux P, Gareau-Page G, Beaulieu AD (2006) Granulocyte macrophage-colony stimulating factor reduces the affinity of SHP-2 for the ITIM of CLECSF6 in neutrophils: a new mechanism of action for SHP-2. Mol Immunol 43:1716–1721. doi: 10.1016/j.molimm.2005.10.006 CrossRefPubMedGoogle Scholar
  46. Seite JF et al (2010) IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116:1698–1704. doi: 10.1182/blood-2009-12-261461 CrossRefPubMedGoogle Scholar
  47. Seno A et al (2015) Exacerbation of experimental autoimmune encephalomyelitis in mice deficient for DCIR, an inhibitory C-type lectin receptor. Exp Anim/Japan Assoc Lab Anim Sci 64(2):109–19Google Scholar
  48. Turville SG et al (2001) HIV gp120 receptors on human dendritic cells. Blood 98:2482–2488CrossRefPubMedGoogle Scholar
  49. Turville SG et al (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3:975–983. doi: 10.1038/ni841 CrossRefPubMedGoogle Scholar
  50. van Vliet SJ, den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y (2007) Innate signaling and regulation of dendritic cell immunity. Curr Opin Immunol 19:435–440. doi: 10.1016/j.coi.2007.05.006 CrossRefPubMedGoogle Scholar
  51. Zhang JG et al (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36:646–657. doi: 10.1016/j.immuni.2012.03.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Research Institute for Biomedical Science, Division of Experimental Animal Immunology, Center for Animal Disease ModelsTokyo University of ScienceNodaJapan

Personalised recommendations