Advertisement

DNGR-1, an F-Actin-Binding C-Type Lectin Receptor Involved in Cross-Presentation of Dead Cell-Associated Antigens by Dendritic Cells

  • Pavel Hanč
  • Salvador Iborra
  • Santiago Zelenay
  • Janneke van Blijswijk
  • David Sancho
  • Caetano Reis e SousaEmail author
Chapter

Abstract

DNGR-1 (also known as CLEC9A) is a C-type lectin homodimeric innate immune receptor that detects the presence of dead cells (Sancho et al. 2009). In both mouse and Man, DNGR-1 is specifically expressed at high levels by dendritic cells (DCs), in particular the XCR1+ ‘CD8α+-like’ subtype that excels in the ability to cross-present cell-associated antigens to CD8+ T cells (Caminschi et al. 2008; Huysamen et al. 2008; Poulin et al. 2010, 2012; Sancho et al. 2008). DNGR-1 plays a key role in the latter process. The receptor is found both at the DC surface and within endosomes, with its ligand-binding domains facing the exterior milieu or the endosomal lumen. This topology allows for effective surveillance of cell corpses with which DCs come into contact, as well as internalised dead cell debris. DNGR-1 signalling, in part via Syk, in response to engagement by ligand, acts to delay endosomal maturation and slow cargo degradation, ensuring the preservation of dead cell-associated antigens (Iborra et al. 2012; Sancho et al. 2009; Zelenay et al. 2012). Whilst the actual mechanism underlying the regulation of cross-presentation of antigens from cellular corpses by DNGR-1 remains a mystery, progress has been made in identifying the ligand. This turns out to be F-actin, an abundant intracellular component that is inaccessible in intact cells and whose exposure therefore serves as a damage-associated molecular pattern (DAMP) (Ahrens et al. 2012; Zhang et al. 2012). The recently solved structure of the DNGR-1: F-actin complex shows that each ligand-binding domain of the receptor nests in the groove between two F-actin protofilaments and contacts three actin subunits. The structure clearly explains specificity of the receptor for F-actin and sheds light into the mode of binding and its biophysical characteristics (Hanč et al. 2015). Here, we review the properties and biology of DNGR-1 and the importance of cytoskeletal recognition in innate immune detection of cell damage.

Keywords

Dendritic cells Necrosis Damage-associated molecular patterns DNGR-1 CLEC9A F-actin Cross-presentation Cytotoxic T cells Innate immunity 

References

  1. Ahrens S, Zelenay S, Sancho D, Hanč P, Kjaer S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M, Batista F, Thompson B, Way M, Reis e Sousa C, Schulz O (2012) F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36(4):635–645. doi: 10.1016/j.immuni.2012.03.008 CrossRefPubMedGoogle Scholar
  2. Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, Mariette C, Chaput N, Mira JP, Delaloge S, Andre F, Tursz T, Kroemer G, Zitvogel L (2007) The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220:47–59. doi: 10.1111/j.1600-065X.2007.00573.x CrossRefPubMedGoogle Scholar
  3. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281. doi: 10.1084/jem.20100348 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bachem A, Hartung E, Guttler S, Mora A, Zhou X, Hegemann A, Plantinga M, Mazzini E, Stoitzner P, Gurka S, Henn V, Mages HW, Kroczek RA (2012) Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front Immunol 3:214. doi: 10.3389/fimmu.2012.00214 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baudino L, Sardini A, Ruseva MM, Fossati-Jimack L, Cook HT, Scott D, Simpson E, Botto M (2014) C3 opsonization regulates endocytic handling of apoptotic cells resulting in enhanced T-cell responses to cargo-derived antigens. Proc Natl Acad Sci U S A 111(4):1503–1508. doi: 10.1073/pnas.1316877111 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196(12):1627–1638CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C (2007) Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316(5824):612–616. doi: 10.1126/science.1137971 CrossRefPubMedGoogle Scholar
  8. Caminschi I, Shortman K (2012) Boosting antibody responses by targeting antigens to dendritic cells. Trends Immunol 33(2):71–77. doi: 10.1016/j.it.2011.10.007 CrossRefPubMedGoogle Scholar
  9. Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, Rizzitelli A, Wu L, Vremec D, van Dommelen SL, Campbell IK, Maraskovsky E, Braley H, Davey GM, Mottram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortman K, Lahoud MH (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112(8):3264–3273. doi: 10.1182/blood-2008-05-155176 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Caminschi I, Vremec D, Ahmet F, Lahoud MH, Villadangos JA, Murphy KM, Heath WR, Shortman K (2012) Antibody responses initiated by Clec9A-bearing dendritic cells in normal and Batf3 (−/−) mice. Mol Immunol 50(1–2):9–17. doi: 10.1016/j.molimm.2011.11.008 CrossRefPubMedGoogle Scholar
  11. Cebrian I, Visentin G, Blanchard N, Jouve M, Bobard A, Moita C, Enninga J, Moita LF, Amigorena S, Savina A (2011) Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147(6):1355–1368. doi: 10.1016/j.cell.2011.11.021 CrossRefPubMedGoogle Scholar
  12. Crozat K, Tamoutounour S, Vu Manh TP, Fossum E, Luche H, Ardouin L, Guilliams M, Azukizawa H, Bogen B, Malissen B, Henri S, Dalod M (2011) Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8alpha+ type. J Immunol 187(9):4411–4415. doi: 10.4049/jimmunol.1101717 CrossRefPubMedGoogle Scholar
  13. Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA, Klekotka PA, Moon C, Albring JC, Ise W, Michael DG, Bhattacharya D, Stappenbeck TS, Holtzman MJ, Sung SS, Murphy TL, Hildner K, Murphy KM (2010) Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J Exp Med 207(4):823–836. doi: 10.1084/jem.20091627 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fuller GL, Williams JA, Tomlinson MG, Eble JA, Hanna SL, Pohlmann S, Suzuki-Inoue K, Ozaki Y, Watson SP, Pearce AC (2007) The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 282(17):12397–12409. doi: 10.1074/jbc.M609558200 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goldberg MB (2001) Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev MMBR 65(4):595–626. doi: 10.1128/MMBR.65.4.595-626.2001 CrossRefPubMedGoogle Scholar
  16. Hanč P, Fujii T, Iborra S, Yamada Y, Huotari J, Schulz O, Ahrens S, Kjaer S, Way M, Sancho D, Namba K, Reis ESC (2015) Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity 42(5):839–849. doi: 10.1016/j.immuni.2015.04.009 CrossRefPubMedGoogle Scholar
  17. Handa Y, Durkin CH, Dodding MP, Way M (2013) Vaccinia virus F11 promotes viral spread by acting as a PDZ-containing scaffolding protein to bind myosin-9A and inhibit RhoA signaling. Cell Host Microbe 14(1):51–62. doi: 10.1016/j.chom.2013.06.006 CrossRefPubMedGoogle Scholar
  18. Hashimoto D, Miller J, Merad M (2011) Dendritic cell and macrophage heterogeneity in vivo. Immunity 35(3):323–335. doi: 10.1016/j.immuni.2011.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194(6):769–779CrossRefPubMedPubMedCentralGoogle Scholar
  20. Heath WR, Carbone FR (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 10(12):1237–1244. doi: 10.1038/ni.1822 CrossRefPubMedGoogle Scholar
  21. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, Murphy KM (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100. doi: 10.1126/science.1164206 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huysamen C, Willment JA, Dennehy KM, Brown GD (2008) CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem 283(24):16693–16701. doi: 10.1074/jbc.M709923200 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iborra S, Izquierdo HM, Martinez-Lopez M, Blanco-Menendez N, Reis e Sousa C, Sancho D (2012) The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest 122(5):1628–1643. doi: 10.1172/JCI60660 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13CrossRefPubMedGoogle Scholar
  25. Joffre OP, Sancho D, Zelenay S, Keller AM, Reis e Sousa C (2010) Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur J Immunol 40(5):1255–1265. doi: 10.1002/eji.201040419 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Joffre OP, Segura E, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12(8):557–569. doi: 10.1038/nri3254 CrossRefPubMedGoogle Scholar
  27. Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, Lee CN, Phipson B, Shi W, Smyth GK, Lew AM, Kato Y, Mueller SN, Davey GM, Heath WR, Shortman K, Caminschi I (2011) Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J Immunol 187(2):842–850. doi: 10.4049/jimmunol.1101176 CrossRefPubMedGoogle Scholar
  28. Lee JH, Park H, Park YH (2014) Molecular mechanisms of host cytoskeletal rearrangements by Shigella invasins. Int J Mol Sci 15(10):18253–18266. doi: 10.3390/ijms151018253 CrossRefPubMedPubMedCentralGoogle Scholar
  29. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e Sousa C (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8(6):630–638. doi: 10.1038/ni1460 CrossRefPubMedGoogle Scholar
  30. Leibundgut-Landmann S, Osorio F, Brown GD, Reis e Sousa C (2008) Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood 112(13):4971–4980. doi: 10.1182/blood-2008-05-158469 CrossRefPubMedGoogle Scholar
  31. Li J, Ahmet F, Sullivan LC, Brooks AG, Kent SJ, De Rose R, Salazar AM, Reis ESC, Shortman K, Lahoud MH, Heath WR, Caminschi I (2015) Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates. Eur J Immunol 45(3):854–864. doi: 10.1002/eji.201445127 CrossRefPubMedGoogle Scholar
  32. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, Chu FF, Randolph GJ, Rudensky AY, Nussenzweig M (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324(5925):392–397. doi: 10.1126/science.1170540 PubMedPubMedCentralGoogle Scholar
  33. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015 CrossRefPubMedGoogle Scholar
  34. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft J, Hashimoto D, Chow A, Price J, Greter M, Bogunovic M, Bellemare-Pelletier A, Frenette PS, Randolph GJ, Turley SJ, Merad M, Immunological Genome Consortium (2012) Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13(9):888–899. doi: 10.1038/ni.2370 Google Scholar
  35. Naik SH, Metcalf D, van Nieuwenhuijze A, Wicks I, Wu L, O’Keeffe M, Shortman K (2006) Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat Immunol 7(6):663–671. doi: 10.1038/ni1340 CrossRefPubMedGoogle Scholar
  36. Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI, Dakic A, Carotta S, O’Keeffe M, Bahlo M, Papenfuss A, Kwak JY, Wu L, Shortman K (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8(11):1217–1226. doi: 10.1038/ni1522 CrossRefPubMedGoogle Scholar
  37. Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampe R, Brown BD, Amsen D, Whiteheart SW, Blander JM (2014) TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158(3):506–521. doi: 10.1016/j.cell.2014.04.054 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nakano S, Sugihara M, Yamada R, Katayanagi K, Tate S (2012) Structural implication for the impaired binding of W150A mutant LOX-1 to oxidized low density lipoprotein, OxLDL. Biochim Biophys Acta 1824(5):739–749. doi: 10.1016/j.bbapap.2012.02.003 CrossRefPubMedGoogle Scholar
  39. Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG (2007) Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8(11):1207–1216. doi: 10.1038/ni1518 CrossRefPubMedGoogle Scholar
  40. Park H, Adsit FG, Boyington JC (2005) The 1.4 angstrom crystal structure of the human oxidized low density lipoprotein receptor lox-1. J Biol Chem 280(14):13593–13599. doi: 10.1074/jbc.M500768200 CrossRefPubMedGoogle Scholar
  41. Park HY, Light A, Lahoud MH, Caminschi I, Tarlinton DM, Shortman K (2013) Evolution of B cell responses to Clec9A-targeted antigen. J Immunol 191(10):4919–4925. doi: 10.4049/jimmunol.1301947 CrossRefPubMedGoogle Scholar
  42. Patel JC, Galan JE (2005) Manipulation of the host actin cytoskeleton by Salmonella – all in the name of entry. Curr Opin Microbiol 8(1):10–15. doi: 10.1016/j.mib.2004.09.001 CrossRefPubMedGoogle Scholar
  43. Peng Y, Elkon KB (2011) Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens. J Clin Invest 121(6):2221–2241. doi: 10.1172/JCI43254 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hagerbrand K, Marsal J, Gudjonsson S, Hakansson U, Reizis B, Kotarsky K, Agace WW (2013) IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38(5):958–969. doi: 10.1016/j.immuni.2013.03.009 CrossRefPubMedGoogle Scholar
  45. Picco G, Beatson R, Taylor-Papadimitriou J, Burchell JM (2014) Targeting DNGR-1 (CLEC9A) with antibody/MUC1 peptide conjugates as a vaccine for carcinomas. Eur J Immunol 44(7):1947–1955. doi: 10.1002/eji.201344076 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C (2010) Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1261–1271. doi: 10.1084/jem.20092618 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM, Hakansson UK, Moita LF, Agace WW, Bonnet D, Reis e Sousa C (2012) DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119(25):6052–6062. doi: 10.1182/blood-2012-01-406967 CrossRefPubMedGoogle Scholar
  48. Qin YH, Dai SM, Tang GS, Zhang J, Ren D, Wang ZW, Shen Q (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J Immunol 183(10):6244–6250. doi: 10.4049/jimmunol.0900390 CrossRefPubMedGoogle Scholar
  49. Radford KJ, Caminschi I (2013) New generation of dendritic cell vaccines. Hum Vaccines Immunother 9(2):259–264CrossRefGoogle Scholar
  50. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183. doi: 10.1146/annurev-immunol-031210-101345 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22(4):507–517. doi: 10.1016/j.immuni.2005.03.004 CrossRefPubMedGoogle Scholar
  52. Ruckrich T, Steinle A (2013) Attenuated natural killer (NK) cell activation through C-type lectin-like receptor NKp80 is due to an anomalous hemi-immunoreceptor tyrosine-based activation motif (HemITAM) with impaired Syk kinase recruitment capacity. J Biol Chem 288(24):17725–17733. doi: 10.1074/jbc.M113.453548 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa C (2008) Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 118(6):2098–2110. doi: 10.1172/JCI34584 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, Rosewell I, Reis e Sousa C (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458(7240):899–903. doi: 10.1038/nature07750 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, Ho AW, See P, Shin A, Wasan PS, Hoeffel G, Malleret B, Heiseke A, Chew S, Jardine L, Purvis HA, Hilkens CM, Tam J, Poidinger M, Stanley ER, Krug AB, Renia L, Sivasankar B, Ng LG, Collin M, Ricciardi-Castagnoli P, Honda K, Haniffa M, Ginhoux F (2013) IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38(5):970–983. doi: 10.1016/j.immuni.2013.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schraml BU, Reis e Sousa C (2015) Defining dendritic cells. Curr Opin Immunol 32:13–20. doi: 10.1016/j.coi.2014.11.001 CrossRefPubMedGoogle Scholar
  57. Schraml BU, van Blijswijk J, Zelenay S, Whitney PG, Filby A, Acton SE, Rogers NC, Moncaut N, Carvajal JJ, Reis e Sousa C (2013) Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154(4):843–858. doi: 10.1016/j.cell.2013.07.014 CrossRefPubMedGoogle Scholar
  58. Schuette V, Burgdorf S (2014) The ins-and-outs of endosomal antigens for cross-presentation. Curr Opin Immunol 26:63–68. doi: 10.1016/j.coi.2013.11.001 CrossRefPubMedGoogle Scholar
  59. Steinman RM, Idoyaga J (2010) Features of the dendritic cell lineage. Immunol Rev 234(1):5–17. doi: 10.1111/j.0105-2896.2009.00888.x CrossRefPubMedGoogle Scholar
  60. Suzuki S, Honma K, Matsuyama T, Suzuki K, Toriyama K, Akitoyo I, Yamamoto K, Suematsu T, Nakamura M, Yui K, Kumatori A (2004) Critical roles of interferon regulatory factor 4 in CD11bhighCD8alpha- dendritic cell development. Proc Natl Acad Sci U S A 101(24):8981–8986. doi: 10.1073/pnas.0402139101 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, Kc W, Albring JC, Satpathy AT, Rotondo JA, Edelson BT, Kretzer NM, Wu X, Weiss LA, Glasmacher E, Li P, Liao W, Behnke M, Lam SS, Aurthur CT, Leonard WJ, Singh H, Stallings CL, Sibley LD, Schreiber RD, Murphy KM (2012) Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490(7421):502–507. doi: 10.1038/nature11531 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vu Manh T, Elhmouzi-Younes J, Urien C, Ruscanu S, Jouneau L, Bourge M, Moroldo M, Foucras G, Salmon H, Marty H, Quéré P, Bertho N, Boudinot P, Dalod M, Schwartz-Cornil I (2015a) Defining mononuclear phagocyte subset homology across several distant warm-blooded vertebrates through comparative transcriptomics. Front Immunol 6:299. doi: 10.3389/fimmu.2015.00299 PubMedPubMedCentralGoogle Scholar
  63. Vu Manh T-P, Bertho N, Hosmalin A, Schwartz-Cornil I, Dalod M (2015b) Investigating evolutionary conservation of dendritic cell subset identity and functions. Front Immunol 6:260. doi: 10.3389/fimmu.2015.00260 PubMedPubMedCentralGoogle Scholar
  64. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9(10):1179–1188. doi: 10.1038/ni.1651 CrossRefPubMedGoogle Scholar
  65. Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J, Mikami Y, Takeda K, Akira S, Saito T (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A 106(6):1897–1902. doi: 10.1073/pnas.0805177106 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, Taniguchi T (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103. doi: 10.1038/nature08512 CrossRefPubMedGoogle Scholar
  67. Zehner M, Chasan AI, Schuette V, Embgenbroich M, Quast T, Kolanus W, Burgdorf S (2011) Mannose receptor polyubiquitination regulates endosomal recruitment of p97 and cytosolic antigen translocation for cross-presentation. Proc Natl Acad Sci U S A 108(24):9933–9938. doi: 10.1073/pnas.1102397108 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zelenay S, Reis e Sousa C (2013) Adaptive immunity after cell death. Trends Immunol 34(7):329–335. doi: 10.1016/j.it.2013.03.005 CrossRefPubMedGoogle Scholar
  69. Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S, Rogers NC, Schulz O, Sancho D, Reis e Sousa C (2012) The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Invest 122(5):1615–1627. doi: 10.1172/JCI60644 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272(24):6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x CrossRefPubMedGoogle Scholar
  71. Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, van Delft MF, Lu J, O’Reilly LA, Josefsson EC, Kile BT, Chin WJ, Mintern JD, Olshina MA, Wong W, Baum J, Wright MD, Huang DC, Mohandas N, Coppel RL, Colman PM, Nicola NA, Shortman K, Lahoud MH (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36(4):646–657. doi: 10.1016/j.immuni.2012.03.009 CrossRefPubMedGoogle Scholar
  72. Zinkernagel RM (2002) On cross-priming of MHC class I-specific CTL: rule or exception? Eur J Immunol 32(9):2385–2392. doi: 10.1002/1521-4141(200209)32:9<2385::AID-IMMU2385>3.0.CO;2-V CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Pavel Hanč
    • 1
  • Salvador Iborra
    • 2
  • Santiago Zelenay
    • 1
    • 3
  • Janneke van Blijswijk
    • 1
  • David Sancho
    • 2
  • Caetano Reis e Sousa
    • 1
    Email author
  1. 1.Immunobiology Laboratory, Lincoln’s Inn Fields LaboratoryThe Francis Crick InstituteLondonUK
  2. 2.Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
  3. 3.Cancer Inflammation and Immunity Laboratory, Cancer Research UK Manchester InstituteThe University of ManchesterManchesterUK

Personalised recommendations