Advertisement

Pathogen-Sensing by Mincle: Function and Molecular Aspects

  • Masahiro Nagata
  • Zakaria Omahdi
  • Sho YamasakiEmail author
Chapter

Abstract

The C-type lectin receptor called Mincle (macrophage-inducible C-type lectin) is a pattern recognition receptor (PRR) mainly expressed by myeloid cells. Over the years, Mincle has been reported to recognize pathogen-associated molecular patterns (PAMPs) from several microorganisms. Among these PAMPs, the most studied is trehalose-6,6-dimycolate (TDM), which is also the most abundant glycolipid present in the cell wall of Mycobacterium tuberculosis. Moreover, it has also been demonstrated that Mincle is involved in fungi recognition, and a growing number of reports show that this PRR may recognize other pathogens. However, in some cases the ligands are still unknown, or the exact role of Mincle in the immune response against these pathogens is unclear. In this chapter, we will begin by presenting the pathogens recognized by Mincle. Then, the Mincle-glycolipid interaction will be described at the molecular level. And last but not least, we will discuss the immune response triggered through Mincle.

Keywords

Mincle C-type lectin Glycolipid recognition Adjuvant receptor 

References

  1. Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Aagaard C, Werninghaus K, Kirschning C, Lang R, Christensen D, Theisen M, Follmann F, Andersen P (2008) Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS One 3(9):e3116. doi: 10.1371/journal.pone.0003116 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alviano DS, Franzen AJ, Travassos LR, Holandino C, Rozental S, Ejzemberg R, Alviano CS, Rodrigues ML (2004) Melanin from Fonsecaea pedrosoi induces production of human antifungal antibodies and enhances the antimicrobial efficacy of phagocytes. Infect Immun 72(1):229–237CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andersen CS, Agger EM, Rosenkrands I, Gomes JM, Bhowruth V, Gibson KJ, Petersen RV, Minnikin DE, Besra GS, Andersen P (2009) A simple mycobacterial monomycolated glycerol lipid has potent immunostimulatory activity. J Immunol 182(1):424–432CrossRefPubMedGoogle Scholar
  4. Behler F, Steinwede K, Balboa L, Ueberberg B, Maus R, Kirchhof G, Yamasaki S, Welte T, Maus UA (2012) Role of Mincle in alveolar macrophage-dependent innate immunity against mycobacterial infections in mice. J Immunol 189(6):3121–3129. doi: 10.4049/jimmunol.1201399 CrossRefPubMedGoogle Scholar
  5. Behler F, Maus R, Bohling J, Knippenberg S, Kirchhof G, Nagata M, Jonigk D, Izykowski N, Mägel L, Welte T, Yamasaki S, Maus UA (2015) Macrophage-inducible C-type lectin Mincle-expressing dendritic cells contribute to control of splenic Mycobacterium bovis BCG infection in mice. Infect Immun 83(1):184–196. doi: 10.1128/IAI.02500-14 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernhardt H, Knoke M (1997) Mycological aspects of gastrointestinal microflora. Scand J Gastroenterol Suppl 222:102–106PubMedGoogle Scholar
  7. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977. doi: 10.1038/nature09247 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bloch H, Sorkin E, Erlenmeyer H (1953) A toxic lipid component of the tubercle bacillus (cord factor). I. Isolation from petroleum ether extracts of young bacterial cultures. Am Rev Tuberc 67(5):629–643PubMedGoogle Scholar
  9. Bloch H, Defaye J, Lederer E, Noll H (1957) Constituents of a toxic-lipid obtained from Mycobacterium tuberculosis. Biochim Biophys Acta 23(2):312–321CrossRefPubMedGoogle Scholar
  10. Bugarcic A, Hitchens K, Beckhouse AG, Wells CA, Ashman RB, Blanchard H (2008) Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology 18(9):679–685. doi: 10.1093/glycob/cwn046 CrossRefPubMedGoogle Scholar
  11. Chaguza C, Cornick JE, Everett DB (2015) Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae. Comput Struct Biotechnol J 13:241–247. doi: 10.1016/j.csbj.2015.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cummings RD, McEver RP (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Chapter 31Google Scholar
  13. de Rivero Vaccari JC, Brand FJ 3rd, Berti AF, Alonso OF, Bullock MR, de Rivero Vaccari JP (2015) Mincle signaling in the innate immune response after traumatic brain injury. J Neurotrauma 32(4):228–236. doi: 10.1089/neu.2014.3436 CrossRefPubMedGoogle Scholar
  14. Desel C, Werninghaus K, Ritter M, Jozefowski K, Wenzel J, Russkamp N, Schleicher U, Christensen D, Wirtz S, Kirschning C, Agger EM, Prazeres da Costa C, Lang R (2013) The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS One 8(1):e53531. doi: 10.1371/journal.pone.0053531 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Devos SA, van der Valk PG (2000) The relevance of skin prick tests for Pityrosporum ovale in patients with head and neck dermatitis. Allergy 55(11):1056–1058CrossRefPubMedGoogle Scholar
  16. Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V, Mollenkopf HJ, Hanke K, Gross O, Ruland J, Kaufmann SH (2010) The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med 207(4):777–792. doi: 10.1084/jem.20090067 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Feinberg H, Jégouzo SA, Rowntree TJ, Guan Y, Brash MA, Taylor ME, Weis WI, Drickamer K (2013) Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor mincle. J Biol Chem 288(40):28457–28465. doi: 10.1074/jbc.M113.497149 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Flornes LM, Bryceson YT, Spurkland A, Lorentzen JC, Dissen E, Fossum S (2004) Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 56(7):506–517CrossRefPubMedGoogle Scholar
  19. Furukawa A, Kamishikiryo J, Mori D, Toyonaga K, Okabe Y, Toji A, Kanda R, Miyake Y, Ose T, Yamasaki S, Maenaka K (2013) Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. Proc Natl Acad Sci U S A 110(43):17438–17443. doi: 10.1073/pnas.1312649110 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Geijtenbeek TB, Gringhuis SI (2009) Signaling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9(7):465–479. doi: 10.1038/nri2569 CrossRefPubMedGoogle Scholar
  21. Geisel RE, Sakamoto K, Russell DG, Rhoades ER (2005) In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin is due principally to trehalose mycolates. J Immunol 174(8):5007–5015CrossRefPubMedGoogle Scholar
  22. Goodridge HS, Underhill DM (2008) Fungal recognition by TLR2 and Dectin-1. Handb Exp Pharmacol 183:87–109CrossRefPubMedGoogle Scholar
  23. Graham LM, Gupta V, Schafer G, Reid DM, Kimberg M, Dennehy KM, Hornsell WG, Guler R, Campanero-Rhodes MA, Palma AS, Feizi T, Kim SK, Sobieszczuk P, Willment JA, Brown GD (2012) The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. J Biol Chem 287(31):25964–25974. doi: 10.1074/jbc.M112.384164 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hattori Y, Morita D, Fujiwara N, Mori D, Nakamura T, Harashima H, Yamasaki S, Sugita M (2014) Glycerol monomycolate is a novel ligand for the human, but not mouse macrophage inducible C-type lectin, Mincle. J Biol Chem 289(22):15405–15412. doi: 10.1074/jbc.M114.566489 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heitmann L, Schoenen H, Ehlers S, Lang R, Hölscher C (2013) Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology 218(4):506–516. doi: 10.1016/j.imbio.2012.06.005 CrossRefPubMedGoogle Scholar
  26. Hunter RL, Olsen MR, Jagannath C, Actor JK (2006) Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36(4):371–386PubMedGoogle Scholar
  27. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206(13):2879–2888. doi: 10.1084/jem.20091750 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T, Yamasaki S (2013) Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13(4):477–488. doi: 10.1016/j.chom.2013.03.008 CrossRefPubMedGoogle Scholar
  29. Jégouzo SA, Harding EC, Acton O, Rex MJ, Fadden AJ, Taylor ME, Drickamer K (2014) Defining the conformation of human mincle that interacts with mycobacterial trehalose dimycolate. Glycobiology 24(12):1291–1300. doi: 10.1093/glycob/cwu072 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Julián E, Roldán M, Sánchez-Chardi A, Astola O, Agustí G, Luquin M (2010) Microscopic cords, a virulence-related characteristic of mycobacterium tuberculosis, are also present in nonpathogenic mycobacteria. J Bacteriol 192(7):1751–1760. doi: 10.1128/JB.01485-09 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. doi: 10.1038/ni.1863 CrossRefPubMedGoogle Scholar
  32. Kawata K, Illarionov P, Yang GX, Kenny TP, Zhang W, Tsuda M, Ando Y, Leung PS, Ansari AA, Eric Gershwin M (2012) Mincle and human B cell function. J Autoimmun 39(4):315–322. doi: 10.1016/j.jaut.2012.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kerscher B, Wilson GJ, Reid DM, Mori D, Taylor JA, Besra GS, Yamasaki S, Willment JA, Brown GD (2015) The mycobacterial receptor, Clec4d (CLECSF8, MCL) is co-regulated with Mincle and upregulated on mouse myeloid cells following microbial challenge. Eur J Immunol. doi: 10.1002/eji.201545858 PubMedGoogle Scholar
  34. Kim DM, Hwang SM, Suh MK, Ha GY, Choi GS, Shin J, Han SH (2011) Chromoblastomycosis caused by Fonsecaea pedrosoi. Ann Dermatol 23(3):369–374. doi: 10.5021/ad.2011.23.3.369 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kiyotake R, Oh-Hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S (2015) Human Mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem 290(42):25322–25332. doi: 10.1074/jbc.M115.645234 CrossRefPubMedGoogle Scholar
  36. Kobayashi T, Yamada M, Aihara M, Ikezawa Z (2006) Immedeate and delayed-type reactivity to fungi and effects of antifungal drugs on atopic dermatitis. Arerugi 55(2):126–133PubMedGoogle Scholar
  37. Kodar K, Eising S, Khan AA, Steiger S, Harper JL, Timmer MS, Stocker BL (2015) The uptake of trehalose glycolipids by macrophages is independent of Mincle. Chembiochem 16(4):683–693. doi: 10.1002/cbic.201402506 CrossRefPubMedGoogle Scholar
  38. Layre E, Collmann A, Bastian M, Mariotti S, Czaplicki J, Prandi J, Mori L, Stenger S, De Libero G, Puzo G, Gilleron M (2009) Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem Biol 16(1):82–92. doi: 10.1016/j.chembiol.2008.11.008 CrossRefPubMedGoogle Scholar
  39. Lee WB, Kang JS, Yan JJ, Lee MS, Jeon BY, Cho SN, Kim YJ (2012) Neutrophils promote mycobacterial trehalose dimycolate-induced lung inflammation via the mincle pathway. PLoS Pathog 8(4):e1002614. doi: 10.1371/journal.ppat.1002614 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu D (ed) (2011) Molecular detection of human fungal pathogens. CRC Press/Taylor & Francis, Boca Raton, p 5Google Scholar
  41. Lobato-Pascual A, Saether PC, Fossum S, Dissen E, Daws MR (2013) Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and FcεRI-γ. Eur J Immunol 43(12):3167–3174. doi: 10.1002/eji.201343752 CrossRefPubMedGoogle Scholar
  42. Matsumoto M, Tanaka T, Kaisho T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Akira S (1999) A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol 163(9):5039–5048PubMedGoogle Scholar
  43. Miyake Y, Oh-Hora M, Yamasaki S (2015) C-type lectin receptor MCL facilitates mincle expression and signaling through complex formation. J Immunol 194(11):5366–5374. doi: 10.4049/jimmunol.1402429 CrossRefPubMedGoogle Scholar
  44. Mócsai A, Ruland J, Tybulewicz VL (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10(6):387–402. doi: 10.1038/nri2765 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Moody DB, Reinhold BB, Guy MR, Beckman EM, Frederique DE, Furlong ST, Ye S, Reinhold VN, Sieling PA, Modlin RL, Besra GS, Porcelli SA (1997) Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278(5336):283–286CrossRefPubMedGoogle Scholar
  46. Noll H (1957) The chemistry of some native constituents of the purified wax of Mycobacterium tuberculosis. J Biol Chem 224(1):149–164PubMedGoogle Scholar
  47. Noll H, Jackim E (1958) The chemistry of the native constituents of the acetone-soluble fat of Mycobacterium tuberculosis (Brevannes). I. Glycerides and phosphoglycolipides. J Biol Chem 232(2):903–917PubMedGoogle Scholar
  48. Noll H, Bloch H, Asselineau J, Lederer E (1956) The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta 20(2):299–309CrossRefPubMedGoogle Scholar
  49. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691. doi: 10.1083/jcb.201006052 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603PubMedPubMedCentralGoogle Scholar
  51. Rabes A, Zimmermann S, Reppe K, Lang R, Seeberger PH, Suttorp N, Witzenrath M, Lepenies B, Opitz B (2015) The C-type lectin receptor Mincle binds to Streptococcus pneumoniae but plays a limited role in the anti-pneumococcal innate immune response. PLoS One 10(2):e0117022. doi: 10.1371/journal.pone.0117022, eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ribbing C, Engblom C, Lappalainen J, Lindstedt K, Kovanen PT, Karlsson MA, Lundeberg L, Johansson C, Nilsson G, Lunderius-Andersson C, Scheynius A (2011) Mast cells generated from patients with atopic eczema have enhanced levels of granule mediators and an impaired Dectin-1 expression. Allergy 66(1):110–119. doi: 10.1111/j.1398-9995.2010.02437.x CrossRefPubMedGoogle Scholar
  53. Richardson MB, Williams SJ (2014) MCL and Mincle: C-type lectin receptors that sense damaged self and pathogen-associated molecular patterns. Front Immunol 5:288. doi: 10.3389/fimmu.2014.00288 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Gross O, Verbeek JS, Ruland J, Tybulewicz V, Brown GD, Moita LF, Taylor PR, Reis e Sousa C (2009) Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206(9):2037–2051. doi: 10.1084/jem.20082818 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Roth RR, James WD (1988) Microbial ecology of the skin. Annu Rev Microbiol 42:441–464CrossRefPubMedGoogle Scholar
  56. Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, Agger EM, Stenger S, Andersen P, Ruland J, Brown GD, Wells C, Lang R (2010) Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 184(6):2756–2760. doi: 10.4049/jimmunol.0904013 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sharma A, Steichen AL, Jondle CN, Mishra BB, Sharma J (2014) Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis 209(11):1837–1846. doi: 10.1093/infdis/jit820 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shenderov K, Barber DL, Mayer-Barber KD, Gurcha SS, Jankovic D, Feng CG, Oland S, Hieny S, Caspar P, Yamasaki S, Lin X, Ting JP, Trinchieri G, Besra GS, Cerundolo V, Sher A (2013) Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. J Immunol 190(11):5722–5730. doi: 10.4049/jimmunol.1203343 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sousa Mda G, Reid DM, Schweighoffer E, Tybulewicz V, Ruland J, Langhorne J, Yamasaki S, Taylor PR, Almeida SR, Brown GD (2011) Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell Host Microbe 9(5):436–443. doi: 10.1016/j.chom.2011.04.005 CrossRefPubMedGoogle Scholar
  60. Suzuki Y, Nakano Y, Mishiro K, Takagi T, Tsuruma K, Nakamura M, Yoshimura S, Shimazawa M, Hara H (2013) Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke. Sci Rep 3:3177. doi: 10.1038/srep03177 PubMedPubMedCentralGoogle Scholar
  61. Tanaka M, Ikeda K, Suganami T, Komiya C, Ochi K, Shirakawa I, Hamaguchi M, Nishimura S, Manabe I, Matsuda T, Kimura K, Inoue H, Inagaki Y, Aoe S, Yamasaki S, Ogawa Y (2014) Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun 5:4982. doi: 10.1038/ncomms5982 CrossRefPubMedGoogle Scholar
  62. Teuschl AH, Neutsch L, Monforte X, Rünzler D, van Griensven M, Gabor F, Redl H (2014) Enhanced cell adhesion on silk fibroin via lectin surface modification. Acta Biomater 10(6):2506–2517. doi: 10.1016/j.actbio.2014.02.012 CrossRefPubMedGoogle Scholar
  63. Toyonaga K, Miyake Y, Yamasaki S (2014) Characterization of the receptors for mycobacterial cord factor in Guinea pig. PLoS One 9(2):e88747. doi: 10.1371/journal.pone.0088747 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tsumita T (1956) Studies on the lipid of BCG. II. On the mycolic acids of wax A fraction of BCG. Jpn J Med Sci Biol 9(4–5):217–222CrossRefPubMedGoogle Scholar
  65. van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, O’Dee DM, Graves A, Thierry-Carstensen B, Andreasen LV, Ruhwald M, de Visser AW, Agger EM, Ottenhoff TH, Kromann I, Andersen P (2014) A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine 32(52):7098–7107. doi: 10.1016/j.vaccine.2014.10.036 CrossRefPubMedGoogle Scholar
  66. Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, Beckhouse AG, Lo YL, Manzanero S, Cobbold C, Schroder K, Ma B, Orr S, Stewart L, Lebus D, Sobieszczuk P, Hume DA, Stow J, Blanchard H, Ashman RB (2008) The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180(11):7404–7413CrossRefPubMedGoogle Scholar
  67. Werninghaus K, Babiak A, Gross O, Hölscher C, Dietrich H, Agger EM, Mages J, Mocsai A, Schoenen H, Finger K, Nimmerjahn F, Brown GD, Kirschning C, Heit A, Andersen P, Wagner H, Ruland J, Lang R (2009) Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med 206(1):89–97. doi: 10.1084/jem.20081445 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wevers BA, Kaptein TM, Zijlstra-Willems EM, Theelen B, Boekhout T, Geijtenbeek TB, Gringhuis SI (2014) Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe 15(4):494–505. doi: 10.1016/j.chom.2014.03.008 CrossRefPubMedGoogle Scholar
  69. World Health Organization Global tuberculosis report 2015 (2015)Google Scholar
  70. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9(10):1179–1188. doi: 10.1038/ni.1651 CrossRefPubMedGoogle Scholar
  71. Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J, Mikami Y, Takeda K, Akira S, Saito T (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A 106(6):1897–1902. doi: 10.1073/pnas.0805177106 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Young E, Koers WJ, Berrens L (1989) Intracutaneous tests with pityrosporon extract in atopic dermatitis. Acta Derm Venereol Suppl (Stockh) 144:122–124Google Scholar
  73. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272(24):6179–6217CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Division of Molecular Immunology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan

Personalised recommendations