Structural Aspects of C-Type Lectin Receptors

  • Atsushi Furukawa
  • Shunsuke Kita
  • Takashi Tadokoro
  • Hideo Fukuhara
  • Katsumi MaenakaEmail author


Numerous structural analyses (X-ray crystallography and NMR) of C-type lectin receptors (CLRs) have been performed, because CLRs are not only attractive as important molecules in immunity and infectious diseases but also as drug targets. In CLRs, high amino acid sequence similarity exists in the extracellular carbohydrate recognition domains (CRDs), which are responsible for ligand binding. However, recent functional analyses of CLRs implied that these molecules recognize a wide variety of ligands in addition to saccharides, including glycopeptides, glycolipids, and proteins. In this chapter, we focus on structural studies of CLRs. We first summarize the structural features conserved among the CRDs and then describe how each C-type lectin receptor elegantly achieves its distinct ligand specificity, by illustrating the structural aspects of several representative CLRs.


C-type lectin receptor Protein structure X-ray crystallography Innate immunity Carbohydrate recognition domain Protein–protein interaction Glycolipids Glycoprotein 


  1. Appelmelk BJ, van Die I, van Vliet SJ, Vandenbroucke-Grauls CM, Geijtenbeek TB, van Kooyk Y (2003) Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol 170(4):1635–1639CrossRefPubMedGoogle Scholar
  2. Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE (2006) The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 35(3):263–278. doi: 10.1385/IR:35:3:263 CrossRefPubMedGoogle Scholar
  3. Chatwell L, Holla A, Kaufer BB, Skerra A (2008) The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45(7):1981–1994. doi: 10.1016/j.molimm.2007.10.030 CrossRefPubMedGoogle Scholar
  4. Feinberg H, Mitchell DA, Drickamer K, Weis WI (2001) Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294(5549):2163–2166. doi: 10.1126/science.1066371 CrossRefPubMedGoogle Scholar
  5. Feinberg H, Taylor ME, Weis WI (2007) Scavenger receptor C-type lectin binds to the leukocyte cell surface glycan Lewis(x) by a novel mechanism. J Biol Chem 282(23):17250–17258. doi: 10.1074/jbc.M701624200 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Feinberg H, Taylor ME, Razi N, McBride R, Knirel YA, Graham SA, Drickamer K, Weis WI (2011) Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site. J Mol Biol 405(4):1027–1039. doi: 10.1016/j.jmb.2010.11.039 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Feinberg H, Jégouzo SA, Rowntree TJ, Guan Y, Brash MA, Taylor ME, Weis WI, Drickamer K (2013) Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor mincle. J Biol Chem. doi: 10.1074/jbc.M113.497149 Google Scholar
  8. Furukawa A, Kamishikiryo J, Mori D, Toyonaga K, Okabe Y, Toji A, Kanda R, Miyake Y, Ose T, Yamasaki S, Maenaka K (2013) Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. Proc Natl Acad Sci U S A 110(43):17438–17443. doi: 10.1073/pnas.1312649110 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11(7):591–598. doi: 10.1038/nsmb784 CrossRefPubMedGoogle Scholar
  10. Kaiser BK, Pizarro JC, Kerns J, Strong RK (2008) Structural basis for NKG2A/CD94 recognition of HLA-E. Proc Natl Acad Sci U S A 105(18):6696–6701. doi: 10.1073/pnas.0802736105 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lee RT, Hsu TL, Huang SK, Hsieh SL, Wong CH, Lee YC (2011) Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobiology 21(4):512–520. doi: 10.1093/glycob/cwq193 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Li Y, Hofmann M, Wang Q, Teng L, Chlewicki LK, Pircher H, Mariuzza RA (2009) Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for MHC-independent missing self recognition. Immunity 31(1):35–46. doi: 10.1016/j.immuni.2009.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li Y, Wang Q, Chen S, Brown PH, Mariuzza RA (2013) Structure of NKp65 bound to its keratinocyte ligand reveals basis for genetically linked recognition in natural killer gene complex. Proc Natl Acad Sci U S A 110(28):11505–11510. doi: 10.1073/pnas.1303300110 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Nagae M, Yamanaka K, Hanashima S, Ikeda A, Morita-Matsumoto K, Satoh T, Matsumoto N, Yamamoto K, Yamaguchi Y (2013) Recognition of bisecting N-acetylglucosamine: structural basis for asymmetric interaction with the mouse lectin dendritic cell inhibitory receptor 2. J Biol Chem 288(47):33598–33610. doi: 10.1074/jbc.M113.513572 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Nagae M, Morita-Matsumoto K, Kato M, Kaneko MK, Kato Y, Yamaguchi Y (2014) A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 22(12):1711–1721. doi: 10.1016/j.str.2014.09.009 CrossRefPubMedGoogle Scholar
  16. Natarajan K, Dimasi N, Wang J, Mariuzza RA, Margulies DH (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol 20:853–885. doi: 10.1146/annurev.immunol.20.100301.064812 CrossRefPubMedGoogle Scholar
  17. Ohki I, Ishigaki T, Oyama T, Matsunaga S, Xie Q, Ohnishi-Kameyama M, Murata T, Tsuchiya D, Machida S, Morikawa K, Tate S (2005) Crystal structure of human lectin-like, oxidized low-density lipoprotein receptor 1 ligand binding domain and its ligand recognition mode to OxLDL. Structure 13(6):905–917. doi: 10.1016/j.str.2005.03.016 CrossRefPubMedGoogle Scholar
  18. Park H, Adsit FG, Boyington JC (2005) The 1.4 angstrom crystal structure of the human oxidized low density lipoprotein receptor lox-1. J Biol Chem 280(14):13593–13599. doi: 10.1074/jbc.M500768200 CrossRefPubMedGoogle Scholar
  19. Petrie EJ, Clements CS, Lin J, Sullivan LC, Johnson D, Huyton T, Heroux A, Hoare HL, Beddoe T, Reid HH, Wilce MC, Brooks AG, Rossjohn J (2008) CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence. J Exp Med 205(3):725–735. doi: 10.1084/jem.20072525 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Silva-Martín N, Bartual SG, Ramírez-Aportela E, Chacón P, Park CG, Hermoso JA (2014) Structural basis for selective recognition of endogenous and microbial polysaccharides by macrophage receptor SIGN-R1. Structure 22(11):1595–1606. doi: 10.1016/j.str.2014.09.001 CrossRefPubMedGoogle Scholar
  21. Spreu J, Kuttruff S, Stejfova V, Dennehy KM, Schittek B, Steinle A (2010) Interaction of C-type lectin-like receptors NKp65 and KACL facilitates dedicated immune recognition of human keratinocytes. Proc Natl Acad Sci U S A 107(11):5100–5105. doi: 10.1073/pnas.0913108107 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Stambach NS, Taylor ME (2003) Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 13(5):401–410. doi: 10.1093/glycob/cwg045 CrossRefPubMedGoogle Scholar
  23. Suzuki-Inoue K, Fuller GL, García A, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107(2):542–549. doi: 10.1182/blood-2005-05-1994 CrossRefPubMedGoogle Scholar
  24. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, Narimatsu H, Ozaki Y (2007) Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 282(36):25993–26001. doi: 10.1074/jbc.M702327200 CrossRefPubMedGoogle Scholar
  25. Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12(1):71–81CrossRefPubMedGoogle Scholar
  26. Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360(6400):127–134. doi: 10.1038/360127a0 CrossRefPubMedGoogle Scholar
  27. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272(24):6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x CrossRefPubMedGoogle Scholar
  28. Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, van Delft MF, Lu J, O’Reilly LA, Josefsson EC, Kile BT, Chin WJ, Mintern JD, Olshina MA, Wong W, Baum J, Wright MD, Huang DC, Mohandas N, Coppel RL, Colman PM, Nicola NA, Shortman K, Lahoud MH (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36(4):646–657. doi: 10.1016/j.immuni.2012.03.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Atsushi Furukawa
    • 1
  • Shunsuke Kita
    • 1
  • Takashi Tadokoro
    • 1
  • Hideo Fukuhara
    • 1
  • Katsumi Maenaka
    • 1
    Email author
  1. 1.Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan

Personalised recommendations