Dectin-2 in Antimicrobial Immunity and Homeostasis

  • Rikio Yabe
  • Shinobu SaijoEmail author


Dendritic cell-associated lectin-2 (Dectin-2) is one of the most well-characterized members of the C-type lectin family. Recent studies have revealed its indispensable functions as a pattern recognition receptor (PRR) for a wide variety of pathogens, including fungi, bacteria, and viruses. This receptor recognizes microbial carbohydrates as a pathogen-associated molecular pattern (PAMP). Upon ligand ligation, Dectin-2 induces secretion of the pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and TNF, as well as the inhibitory cytokine IL-10. These cytokines differentiate T cells into IL-17-producing Th17 cells to eliminate pathogens. In addition to microbes, Dectin-2 also binds to allergens such as those of house dust mites and helminths to activate the NLRP3 inflammasome. In vivo, Dectin-2 plays a key role in antimicrobial infection, especially antifungal infections. Owing to these abilities, Dectin-2 agonists could be promising adjuvants in vaccinations. In this section, we summarize the current knowledge of Dectin-2 in detail, describing its structure, ligand recognition, signaling, and associated human diseases.


Dectin-2 Fungal infection Bacterial infection Innate immunity Inflammation Carbohydrate High mannose 


  1. Ariizumi K, Shen GL, Shikano S, Ritter R 3rd, Zukas P, Edelbaum D, Morita A, Takashima A (2000) Cloning of a second dendritic cell-associated C-type lectin (dectin-2) and its alternatively spliced isoforms. J Biol Chem 275:11957–11963CrossRefPubMedGoogle Scholar
  2. Balch SG, Greaves DR, Gordon S, McKnight AJ (2002) Organization of the mouse macrophage C-type lectin (Mcl) gene and identification of a subgroup of related lectin molecules. Eur J Immunogenet: Off J Br Soc Histocompatibility Immunogenet 29:61–64CrossRefGoogle Scholar
  3. Barrett NA, Maekawa A, Rahman OM, Austen KF, Kanaoka Y (2009) Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 182:1119–1128CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W, Austen KF, Kanaoka Y (2011) Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J Exp Med 208:593–604CrossRefPubMedPubMedCentralGoogle Scholar
  5. Briken V, Porcelli SA, Besra GS, Kremer L (2004) Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53:391–403CrossRefPubMedGoogle Scholar
  6. Brudner M, Karpel M, Lear C, Chen L, Yantosca LM, Scully C, Sarraju A, Sokolovska A, Zariffard MR, Eisen DP et al (2013) Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS One 8:e60838CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caliz R, Canet LM, Lupianez CB, Canhao H, Escudero A, Filipescu I, Segura-Catena J, Soto-Pino MJ, Exposito-Ruiz M, Ferrer MA et al (2013) Gender-specific effects of genetic variants within Th1 and Th17 cell-mediated immune response genes on the risk of developing rheumatoid arthritis. PLoS One 8:e72732CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chan ED, Morris KR, Belisle JT, Hill P, Remigio LK, Brennan PJ, Riches DW (2001) Induction of inducible nitric oxide synthase-NO* by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-kappaB signaling pathways. Infect Immun 69:2001–2010CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cutler JE (2001) N-glycosylation of yeast, with emphasis on Candida albicans. Med Mycol 39(Suppl 1):75–86PubMedGoogle Scholar
  10. Dennehy KM, Willment JA, Williams DL, Brown GD (2009) Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signaling pathways. Eur J Immunol 39:1379–1386CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fernandes MJ, Finnegan AA, Siracusa LD, Brenner C, Iscove NN, Calabretta B (1999) Characterization of a novel receptor that maps near the natural killer gene complex: demonstration of carbohydrate binding and expression in hematopoietic cells. Cancer Res 59:2709–2717PubMedGoogle Scholar
  12. Fujikado N, Saijo S, Iwakura Y (2006) Identification of arthritis-related gene clusters by microarray analysis of two independent mouse models for rheumatoid arthritis. Arthritis Res Ther 8:R100CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gerosa F, Baldani-Guerra B, Lyakh LA, Batoni G, Esin S, Winkler-Pickett RT, Consolaro MR, De Marchi M, Giachino D, Robbiano A et al (2008) Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J Exp Med 205:1447–1461CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10:1081–1088CrossRefPubMedGoogle Scholar
  15. Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, Inui M, Takai T, Shibuya A, Saijo S et al (2007) The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol 8:619–629CrossRefPubMedGoogle Scholar
  16. Hobson RP, Munro CA, Bates S, MacCallum DM, Cutler JE, Heinsbroek SE, Brown GD, Odds FC, Gow NA (2004) Loss of cell wall mannosylphosphate in Candida albicans does not influence macrophage recognition. J Biol Chem 279:39628–39635CrossRefPubMedGoogle Scholar
  17. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T et al (2013) Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13:477–488CrossRefPubMedGoogle Scholar
  19. Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A (2010) IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol 185:5453–5462CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mazurek J, Ignatowicz L, Kallenius G, Svenson SB, Pawlowski A, Hamasur B (2012) Divergent effects of mycobacterial cell wall glycolipids on maturation and function of human monocyte-derived dendritic cells. PLoS One 7:e42515CrossRefPubMedPubMedCentralGoogle Scholar
  21. McDonald JU, Rosas M, Brown GD, Jones SA, Taylor PR (2012) Differential dependencies of monocytes and neutrophils on dectin-1, dectin-2 and complement for the recognition of fungal particles in inflammation. PLoS One 7:e45781CrossRefPubMedPubMedCentralGoogle Scholar
  22. McGreal EP, Rosas M, Brown GD, Zamze S, Wong SY, Gordon S, Martinez-Pomares L, Taylor PR (2006) The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16:422–430CrossRefPubMedGoogle Scholar
  23. Miyake Y, Toyonaga K, Mori D, Kakuta S, Hoshino Y, Oyamada A, Yamada H, Ono K, Suyama M, Iwakura Y et al (2013) C-type lectin MCL is an FcRgamma-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity 38:1050–1062CrossRefPubMedGoogle Scholar
  24. Miyake Y, Oh-Hora M, Yamasaki S (2015) C-type lectin receptor MCL facilitates Mincle expression and signaling through complex formation. J Immunol 194:5366–5374CrossRefPubMedGoogle Scholar
  25. Miyasaka T, Akahori Y, Toyama M, Miyamura N, Ishii K, Saijo S, Iwakura Y, Kinjo Y, Miyazaki Y, Oishi K et al (2013) Dectin-2-dependent NKT cell activation and serotype-specific antibody production in mice immunized with pneumococcal polysaccharide vaccine. PLoS One 8:e78611CrossRefPubMedPubMedCentralGoogle Scholar
  26. Norimoto A, Hirose K, Iwata A, Tamachi T, Yokota M, Takahashi K, Saijo S, Iwakura Y, Nakajima H (2014) Dectin-2 promotes house dust mite-induced T helper type 2 and type 17 cell differentiation and allergic airway inflammation in mice. Am J Respir Cell Mol Biol 51:201–209PubMedGoogle Scholar
  27. Odds FC (1988) Candida and candidosis, 2nd edn. Baillere-Tindall, LondonGoogle Scholar
  28. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ritter M, Gross O, Kays S, Ruland J, Nimmerjahn F, Saijo S, Tschopp J, Layland LE, Prazeres da Costa C (2010) Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc Natl Acad Sci U S A 107:20459–20464CrossRefPubMedPubMedCentralGoogle Scholar
  30. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Gross O, Verbeek JS, Ruland J, Tybulewicz V, Brown GD et al (2009) Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206:2037–2051CrossRefPubMedPubMedCentralGoogle Scholar
  31. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, Fujikado N, Kusaka T, Kubo S, Chung SH et al (2010) Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:681–691CrossRefPubMedGoogle Scholar
  32. Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, Kimberly RP, Underhill D, Cruz PD Jr, Ariizumi K (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281:38854–38866CrossRefPubMedGoogle Scholar
  33. Seeds RE, Gordon S, Miller JL (2009) Characterisation of myeloid receptor expression and interferon alpha/beta production in murine plasmacytoid dendritic cells by flow cytomtery. J Immunol Methods 350:106–117CrossRefPubMedGoogle Scholar
  34. Shibata N, Kobayashi H, Okawa Y, Suzuki S (2003) Existence of novel beta-1,2 linkage-containing side chain in the mannan of Candida lusitaniae, antigenically related to Candida albicans serotype A. Eur J Biochem 270:2565–2575CrossRefPubMedGoogle Scholar
  35. Shinohara H, Nagi-Miura N, Ishibashi K, Adachi Y, Ishida-Okawara A, Oharaseki T, Takahashi K, Naoe S, Suzuki K, Ohno N (2006) Beta-mannosyl linkages negatively regulate anaphylaxis and vasculitis in mice, induced by CAWS, fungal PAMPS composed of mannoprotein-beta-glucan complex secreted by Candida albicans. Biol Pharm Bull 29:1854–1861CrossRefPubMedGoogle Scholar
  36. Taylor PR, Reid DM, Heinsbroek SE, Brown GD, Gordon S, Wong SY (2005) Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo. Eur J Immunol 35:2163–2174CrossRefPubMedGoogle Scholar
  37. Taylor PR, Roy S, Leal SM Jr, Sun Y, Howell SJ, Cobb BA, Li X, Pearlman E (2014) Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nat Immunol 15:143–151CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wandstrat A, Wakeland E (2001) The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2:802–809CrossRefPubMedGoogle Scholar
  39. Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, Inoue H, Tanaka M, Yoneyama M, Oh-Hora M et al (2014) Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41:402–413CrossRefPubMedGoogle Scholar
  40. Zhu LL, Zhao XQ, Jiang C, You Y, Chen XP, Jiang YY, Jia XM, Lin X (2013) C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39:324–334CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Division of Molecular Immunology, Medical Mycology Research CenterChiba UniversityChiba CityJapan

Personalised recommendations