Vulnerability and Exposure to Geomorphic Hazards: Some Insights from the European Alps

Chapter
Part of the Advances in Geographical and Environmental Sciences book series (AGES)

Abstract

Geomorphological processes and society are connected through a diverse set of relationships and feedbacks. One of the main connections concerns the impact of hazardous geomorphic processes on society that lead to economic and life losses. Due to the extent of geomorphological activity in mountain regions, and the considerable proportion of these that are occupied and used by people, mountains are a particular focus in geohazard and interdisciplinary risk research. Taking the European Alps as an example, a short overview indicates the fundamentals of mountain hazard processes and highlights trends in the number of different hazard types in Austria. Climate and environmental change as well as their influence on mountain hazard processes are discussed with a focus on the cryosphere and hydrosphere. Key issues in developing a more thorough understanding of increasing losses and future risk are exposure and vulnerability. Initial insights on exposure are provided by an analysis of the past evolution and current situation in the context of spatial and temporal distribution of values at risk; this is illustrated with reference to Austria. The importance of vulnerability for risk reduction is internationally acknowledged but somewhat less studied and, indeed, seems to be hidden between the different foci of disciplines. Innovative methods for vulnerability analysis (documentation, vulnerability curves) are presented contributing to close this gap. Overall, mountain hazard research highlights the importance of connecting geomorphology and the socio-economy in order to contribute to the most challenging questions of more sustainable societies.

Keywords

Mountain hazards Environmental change Vulnerability Exposure Risk dynamics 

References

  1. Akbas S, Blahut J, Sterlacchini S (2009) Critical assessment of existing physical vulnerability estimation approaches for debris flows. In: Malet J, Remaître A, Bogaard T (eds) Landslide processes: from geomorphological mapping to dynamic modelling. CERG Editions, Strasbourgh, pp 229–233Google Scholar
  2. Alger C, Brabb E (2001) The development and application of a historical bibliography to assess landslide hazard in the United States. In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments. Kluwer, Dordrecht, pp 185–199CrossRefGoogle Scholar
  3. APCC (ed) (2014) Österreichischer Sachstandsbericht Klimawandel 2014. Verlag der Österreichischen Akademie der Wissenschaften, WienGoogle Scholar
  4. Apel H, Aronica G, Kreibich H, Thieken A (2009) Flood risk analyses – how detailed do we need to be? Nat Hazards 49(1):79–98CrossRefGoogle Scholar
  5. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46CrossRefGoogle Scholar
  6. Baggi S, Schweizer J (2009) Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Nat Hazards 50(1):97–108CrossRefGoogle Scholar
  7. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59(1–2):5–31CrossRefGoogle Scholar
  8. Bezzola G, Hegg C (eds) (2007) Ereignisanalyse Hochwasser 2005, Teil 1 – Prozesse, Schäden und erste Einordnung. Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt WSL, Bern und BirmensdorfGoogle Scholar
  9. Birkmann J, Cardona OM, Carreño ML, Barbat AH, Pelling M, Schneiderbauer S, Kienberger S, Keiler M, Alexander D, Zeil P, Welle T (2013) Framing vulnerability, risk and societal responses: the MOVE framework. Nat Hazards 67(2):193–211CrossRefGoogle Scholar
  10. Blöchl A, Braun B (2005) Economic assessment of landslide risks in the Swabian Alb, Germany – research framework and first results of homeowner’s and experts’ surveys. Nat Hazards Earth Syst Sci 5(3):389–396CrossRefGoogle Scholar
  11. Bründl M, Romang H, Bischof N, Rheinberger C (2009) The risk concept and its application in natural hazard risk management in Switzerland. Nat Hazards Earth Syst Sci 9(3):801–813CrossRefGoogle Scholar
  12. Bründl M, Bartelt P, Schweizer J, Keiler M, Glade T (2010) Review and future challenges in snow avalanche risk analysis. In: Alcántara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 49–61CrossRefGoogle Scholar
  13. Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R, Schöner W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multivariable analysis. Int J Climatol 29(15):2197–2225CrossRefGoogle Scholar
  14. Callaghan TV, Johansson M, Brown RD, Groisman PY, Labba N, Radionov V, Barry RG, Blangy S, Bradley RS, Bulygina ON, Christensen TR, Colman J, Essery RLH, Forbes B, Forchhammer MC, Frolov DM, Golubev VN, Grenfell TC, Honrath RE, Juday GP, Melloh R, Meshcherskaya AV, Petrushina MN, Phoenix GK, Pomeroy J, Rautio A, Razuvaev VN, Robinson DA, Romanov P, Schmidt NM, Serreze MC, Shevchenko V, Shiklomanov A, Shindell D, Shmakin AB, Sköld P, Sokratov SA, Sturm M, Warren S, Woo M-K, Wood EF, Yang D (2011) Changing snow cover and its impacts. In: AMAP (ed) Snow, water, ice and permafrost in the Arctic (SWIPA): climate change and the cryosphere. Arctic Monitoring and Assessment Programme, Oslo, p 4.1–4.58Google Scholar
  15. Calvo B, Savi F (2009) A real-world application of Monte Carlo procedure for debris flow risk assessment. Comput Geosci 35(5):967–977CrossRefGoogle Scholar
  16. CRED [Centre for Research on the Epidemiology of Disasters] (2014) The OFDA/CRED international disaster database EM-DAT. Université Catholique de Louvain, Brussels. www.emdat.net. Accessed 1 Dec 2014
  17. Crozier M (1999) The frequency and magnitude of geomorphic processes and landform behaviour. Z Geomorphol NF Suppl Bd 115:35–50Google Scholar
  18. Diffenbaugh NS, Scherer M, Ashfaq M (2013) Response of snow-dependent hydrologic extremes to continued global warming. Nat Clim Chang 3(4):379–384CrossRefGoogle Scholar
  19. Eckert N, Parent E, Kies R, Baya H (2010) A spatio-temporal modelling framework for assessing the fluctuations of avalanche occurrence resulting from climate change: application to 60 years of data in the Northern French Alps. Clim Chang 101(3):515–553CrossRefGoogle Scholar
  20. EEA (ed) (2012) Climate change, impacts and vulnerability in Europe 2012. Office for Official Publications of the European Union, LuxembourgGoogle Scholar
  21. Eisbacher G, Clague J (1984) Destructive mass movements in high mountains: hazard and management, vol paper 84–16. Geological Survey of Canada, OttawaGoogle Scholar
  22. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3–4):85–98CrossRefGoogle Scholar
  23. Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ, Plattner G-K, Ebi KL, Allen SK, Mastrandrea MD, Tignor M, Mach KJ, Midgley PM (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Foelsche U (2005) Regionale Entwicklung und Auswirkungen extremer Wetterereignisse am Beispiel Österreich. In: Steininger K, Steinreiber C, Ritz C (eds) Extreme Wetterereignisse und ihre wirtschaftlichen Folgen. Springer, Berlin, pp 25–44CrossRefGoogle Scholar
  25. Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria – paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9(2):337–352CrossRefGoogle Scholar
  26. Fuchs S, Bründl M (2005) Damage potential and losses resulting from snow avalanches in settlements of the canton of Grisons, Switzerland. Nat Hazards 34(1):53–69CrossRefGoogle Scholar
  27. Fuchs S, Keiler M (2013) Space and time: coupling dimensions in natural hazard risk management? In: Müller-Mahn D (ed) The spatial dimension of risk – how geography shapes the emergence of riskscapes. Earthscan, London, pp 189–201Google Scholar
  28. Fuchs S, Keiler M, Sokratov S (2015) Snow and avalanches. In: Huggel C, Carey M, Clague JJ, Kääb A (eds) The high-mountain cryosphere: environmental changes and human risks. Cambridge University Press, Cambridge, pp 50–70CrossRefGoogle Scholar
  29. Fuchs S, Heiss K, Hübl J (2007a) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7(5):495–506CrossRefGoogle Scholar
  30. Fuchs S, Thöni M, McAlpin MC, Gruber U, Bründl M (2007b) Avalanche hazard mitigation strategies assessed by cost effectiveness analyses and cost benefit analyses – evidence from Davos, Switzerland. Nat Hazards 41(1):113–129CrossRefGoogle Scholar
  31. Fuchs S, Kuhlicke C, Meyer V (2011) Editorial for the special issue: vulnerability to natural hazards – the challenge of integration. Nat Hazards 58(2):609–619CrossRefGoogle Scholar
  32. Fuchs S, Ornetsmüller C, Totschnig R (2012) Spatial scan statistics in vulnerability assessment – an application to mountain hazards. Nat Hazards 64(3):2129–2151CrossRefGoogle Scholar
  33. Fuchs S, Keiler M, Sokratov SA, Shnyparkov A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Nat Hazards 68(3):1217–1241CrossRefGoogle Scholar
  34. Gibbs MT (2012) Time to re-think engineering design standards in a changing climate: the role of risk-based approaches. J Risk Res 12(7):711–716CrossRefGoogle Scholar
  35. Giles D (2013) Intensity scales. In: Bobrowsky P (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 544–552CrossRefGoogle Scholar
  36. Greiving S, Fleischhauer M, Wanczura S (2006) Management of natural hazards in Europe: the role of spatial planning in selected EU member states. J Environ Plan Manag 49(5):739–757CrossRefGoogle Scholar
  37. Haeberli W (2013) Mountain permafrost – research frontiers and a special long-term challenge. Cold Reg Sci Technol 96:71–76CrossRefGoogle Scholar
  38. Hilker N, Badoux A, Hegg C (2009) The swiss flood and landslide damage database 1972–2007. Nat Hazards Earth Syst Sci 9(3):913–925CrossRefGoogle Scholar
  39. Holub M, Fuchs S (2009) Mitigating mountain hazards in Austria – legislation, risk transfer, and awareness building. Nat Hazards Earth Syst Sci 9(2):523–537CrossRefGoogle Scholar
  40. Huggel C, Clague J, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landf 37(1):77–91CrossRefGoogle Scholar
  41. Jakob M, Stein D, Ulmi M (2012) Vulnerability of buildings to debris flow impact. Nat Hazards 60(2):241–261CrossRefGoogle Scholar
  42. Kappes M, Keiler M, von Elverfeldt K, Glade T (2012a) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64(2):1925–1958CrossRefGoogle Scholar
  43. Kappes M, Papathoma-Köhle M, Keiler M (2012b) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32(2):577–590CrossRefGoogle Scholar
  44. Keiler M (2013) World-wide trends in natural disasters. In: Bobrowski P (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 1111–1114CrossRefGoogle Scholar
  45. Keiler M, Fuchs S (2010) Berechnetes Risiko – Mit Sicherheit am Rande der Gefahrenzone. In: Egner H, Pott A (eds) Geographische Risikoforschung. Zur Konstruktion verräumlichter Risiken und Sicherheiten, Erdkundliches Wissen 147. Franz Steiner, Stuttgart, pp 51–68Google Scholar
  46. Keiler M, Zischg A, Fuchs S, Hama M, Stötter J (2005) Avalanche related damage potential – changes of persons and mobile values since the mid-twentieth century, case study Galtür. Nat Hazards Earth Syst Sci 5(1):49–58CrossRefGoogle Scholar
  47. Keiler M, Sailer R, Jörg P, Weber C, Fuchs S, Zischg A, Sauermoser S (2006) Avalanche risk assessment – a multi-temporal approach, results from Galtür, Austria. Nat Hazards Earth Syst Sci 6(4):637–651CrossRefGoogle Scholar
  48. Keiler M, Knight J, Harrison S (2010) Climate change and geomorphological hazards in the eastern European Alps. Philos Trans R Soc London, Ser A 368:2461–2479CrossRefGoogle Scholar
  49. Kilburn CRJ, Pasuto A (2003) Major risk from rapid, large-volume landslides in Europe. Geomorphology 54:3–9CrossRefGoogle Scholar
  50. Korup O, Görüm T, Hayakawa Y (2012) Without power? Landslide inventories in the face of climate change. Earth Surf Process Landf 37(1):92–99CrossRefGoogle Scholar
  51. Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27(3):201–230CrossRefGoogle Scholar
  52. Löffler R, Steinicke E (2006) Counterurbanization and its socioeconomic effects in high mountain areas of the Sierra Nevada (California/Nevada). Mt Res Dev 26(1):64–71CrossRefGoogle Scholar
  53. Markantonis V, Meyer V, Schwarze R (2012) Valuating the intangible effects of natural hazards – review and analysis of the costing methods. Nat Hazards Earth Syst Sci 12(5):1633–1640CrossRefGoogle Scholar
  54. Mavrouli O, Fotopoulou S, Pitilakis K, Zuccaro G, Corominas J, Santo A, Cacace F, De Gregorio D, Di Crescenzo G, Foerster E, Ulrich T (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):265–289Google Scholar
  55. Mazzorana B, Simoni S, Scherer C, Gems B, Fuchs S, Keiler M (2014) A physical approach on flood risk vulnerability of buildings. Hydrol Earth Syst Sci 18(9):3817–3836CrossRefGoogle Scholar
  56. Meng X, Zhao Q, Ji X, Yao J, Liu Y, Liu Z (2013) Study on the high mountain snowmelt runoff forecast system based on GIS technology. Int J Appl Environ Sci 8(10):1247–1256Google Scholar
  57. Merz B (2006) Hochwasserrisiken. Schweizerbart, StuttgartGoogle Scholar
  58. Messerli B (2012) Global change and the world’s mountains. Mt Res Dev 32(S1):S55–S63CrossRefGoogle Scholar
  59. Munich R (2014) Topics Geo. Natural catastrophes 2013. Munich Reinsurance Company, MünchenGoogle Scholar
  60. Nordregio (2004) Mountain areas in Europe: analysis of mountain areas in EU member states, acceding and other European countries. Final report, StockholmGoogle Scholar
  61. Papathoma-Köhle M, Kappes M, Keiler M, Glade T (2011) Physical vulnerability assessment for alpine hazards: state of the art and future needs. Nat Hazards 58(2):645–680CrossRefGoogle Scholar
  62. Papathoma-Köhle M, Totschnig R, Keiler M, Glade T (2012) A new vulnerability function for debris flow – the importance of physical vulnerability assessment in alpine areas. In: Koboltschng G, Hübl J, Braun J (eds) Internationales symposion interpraevent. Internationale Forschungsgesellschaft Interpraevent, Klagenfurt, pp 1033–1043Google Scholar
  63. Papathoma-Köhle M, Zischg A, Fuchs S, Glade T, Keiler M (2015) Loss estimation for landslides in mountain areas – an integrated toolbox for vulnerability assessment and damage documentation. Environ Model Softw 63:156–169CrossRefGoogle Scholar
  64. Quan Luna B, Blahut J, van Westen C, Sterlacchini S, van Asch T, Akbas S (2011) The application of numerical debris flow modelling for the generation of physical vulnerability curves. Nat Hazards Earth Syst Sci 11(7):2047–2060CrossRefGoogle Scholar
  65. Republik Österreich (1975) Forstgesetz 1975. BGBl 440/1975Google Scholar
  66. Republik Österreich (1976) Verordnung des Bundesministers für Land- und Forstwirtschaft vom 30. Juli 1976 über die Gefahrenzonenpläne. BGBl 436/1976Google Scholar
  67. Sattler K, Keiler M, Zischg A, Schrott L (2011) On the connection between debris flow activity and permafrost degradation: a case study from the Schnalstal, South Tyrolean Alps, Italy. Permafr Periglac Process 22:254–265CrossRefGoogle Scholar
  68. Schröter D, Cramer W, Leemans R, Prentice I, Araújo M, Arnell N, Bondeau A, Bugmann H, Carter T, Gracia C, de la Vega-Leinert A, Erhard M, Ewert F, Glendining M, House J, Kankaanpää S, Klein R, Lavorel S, Lindner M, Metzger M, Meyer J, Mitchell T, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes M, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337CrossRefGoogle Scholar
  69. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 109–230CrossRefGoogle Scholar
  70. Slaymaker O, Embleton-Hamann C (2009) Mountains. In: Slaymaker O, Spencer T, Embleton-Hamann C (eds) Geomorphology and global environmental change. Cambridge University Press, Cambridge, pp 37–70CrossRefGoogle Scholar
  71. Slaymaker O, Spencer T, Embleton-Hamann C (eds) (2009) Geomorphology and global environmental change. Cambridge University Press, CambridgeGoogle Scholar
  72. Steiner D, Pauling A, Nussbaumer SU, Nesje A, Luterbacher J, Wanner H, Zumbühl HJ (2008) Sensitivity of European glaciers to precipitation and temperature – two case studies. Clim Chang 90(4):413–441CrossRefGoogle Scholar
  73. Stewart IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Process 23(1):78–94CrossRefGoogle Scholar
  74. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  75. Totschnig R, Fuchs S (2013) Mountain torrents: quantifying vulnerability and assessing uncertainties. Eng Geol 155:31–44CrossRefGoogle Scholar
  76. Totschnig R, Sedlacek W, Fuchs S (2011) A quantitative vulnerability function for fluvial sediment transport. Nat Hazards 58(2):681–703CrossRefGoogle Scholar
  77. Tsao T-C, Hsu W-K, Cheng C-T, Lo W-C, Chen C-Y, Chang Y-L, Ju J-P (2010) A preliminary study of debris flow risk estimation and management in Taiwan. In: Chen S-C (ed) Internationales Symposion Interpraevent in the Pacific Rim. Internationale Forschungsgesellschaft Interpraevent, Klagenfurt, pp 930–939Google Scholar
  78. UN (ed) (2002) Guidelines for reducing flood losses. United Nations, GenevaGoogle Scholar
  79. UN General Assembly (1989) International decade for natural disaster reduction. United Nations General Assembly Resolution 236 session 44 of 22 December 1989. A-RES-44-236Google Scholar
  80. UN General Assembly (1998) International year of mountains 2002. United Nations General Assembly Resolution session 53 of 10 November 1998. A-RES-53-24Google Scholar
  81. UNDRO (1982) Natural disasters and vulnerability analysis. Office of the United Nations Disaster Relief Co-ordinator, GenevaGoogle Scholar
  82. Uzielli M, Nadim F, Lacasse S, Kaynia A (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102(3–4):251–256CrossRefGoogle Scholar
  83. van Westen C, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation – why is it still so difficult? Bull Eng Geol Environ 65(2):167–184CrossRefGoogle Scholar
  84. Varnes D (1984) Landslide hazard zonation: a review of principles and practice, vol 3. Natural hazards. UNESCO, ParisGoogle Scholar
  85. WMO (ed) (1999) Comprehensive risk assessment for natural hazards, vol technical document, no. 955. World Meteorological Organisation, GenevaGoogle Scholar
  86. Zischg A, Fuchs S, Keiler M, Stötter J (2005) Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation. Nat Hazards Earth Syst Sci 5(2):235–242CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.University of BernInstitute of GeographyBernSwitzerland
  2. 2.Institute of Mountain Risk EngineeringUniversity of Natural Resources and Life SciencesWienAustria

Personalised recommendations