Skip to main content

Biopharmaceutical Evaluation of Intermolecular Interactions by AUC-SE

  • Chapter
  • First Online:
Analytical Ultracentrifugation

Abstract

Analytical ultracentrifugation sedimentation equilibrium (AUC-SE) is a useful technique to investigate the weak reversible intermolecular interactions among proteins in solution. It provides biophysical information such as the average apparent molecular weight, stoichiometry, and association constant of associating proteins. Several studies of intermolecular interaction in biopharmaceuticals by AUC-SE are introduced in this chapter. AUC-SE also provides the second virial coefficient (B 2), which represents the type, i.e., repulsive and attractive, and a magnitude of intermolecular interactions. The B 2 values obtained from the protein solution at low concentrations showed good correlation with aggregation and viscosity of MAb at high concentrations, indicating that B 2 can be an effective indicator of aggregation propensity and viscosity. These findings suggest that AUC-SE provides clues to understand the self-association in biopharmaceuticals and to establish effective manufacturing process, formulation, and administration of biopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford JR, Kendrick BS, Carpenter JF, Randolph TW (2008) Measurement of the second osmotic virial coefficient for protein solutions exhibiting monomer-dimer equilibrium. Anal Biochem 377:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attri AK, Minton AP (2005) New methods for measuring macromolecular interactions in solution via static light scattering: basic methodology and application to nonassociating and self-associating proteins. Anal Biochem 337:103–110

    Article  CAS  PubMed  Google Scholar 

  • Bajaji H, Sharma VK, Badkar A, Zeng D, Nema S, Kalonia DS (2006) Protein structural conformation and not second virial coefficient relates to long-term irreversible aggregation of a monoclonal antibody and ovalbumin in solution. Pharm Res 23:1382–1394

    Article  Google Scholar 

  • Bhambhani A, Kissmann JM, Joshi SB, Vokin DB, Kashi RS, Middaugh CR (2012) Formulation design and high-throughput excipient selection based on structural integrity and conformational stability of dilute and highly concentrated IgG1 monoclonal antibody solutions. J Pharm Sci 101:1120–1135

    Article  CAS  PubMed  Google Scholar 

  • Brun VL, Friess W, Bassarab S, Mühlau S, Garidel P (2010a) A critical evaluation of self-interaction chromatography as a predictive tool for the assessment of protein-protein interactions in protein formulation development: a case study of a therapeutic monoclonal antibody. Eur J Pharm Biopharm 75:16–25

    Article  PubMed  Google Scholar 

  • Brun VL, Friess W, Schultz-Fademrecht T, Muehlau S, Garidel P (2009) Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization. Biotechnol J 4:1305–1319

    Article  PubMed  Google Scholar 

  • Brun VL, Friess W, Bassarab S, Garidel P (2010b) Correlation of protein-protein interactions as assessed by affinity chromatography with colloidal protein stability: a case study with lysozyme. Pharm Develop Technol 15:421–430

    Article  Google Scholar 

  • Chari R, Jerath K, Badkar AV, Kalonia DS (2009) Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm Res 26:2607–2618

    Article  CAS  PubMed  Google Scholar 

  • Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003a) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Chi EY, Krishnan S, Kendrick BS, Chang BS, Carpenter JF, Randolph TW (2003b) Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor. Protein Sci 12:903–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou DK, Krishnamurthy R, Manning MC, Randolph TW, Carpenter JF (2012) Physical stability of albinterferon-α2b in aqueous solution: effects of conformational stability and colloidal stability on aggregation. J Pharm Sci 101:2702–2719

    Article  CAS  PubMed  Google Scholar 

  • Deszczynski M, Harding SE, Winzor DJ (2006) Negative second virial coefficients as predictors of protein crystal growth: evidence from sedimentation equilibrium studies that refutes the designation of those light scattering parameters as osmotic virial coefficients. Biophys Chem 120:106–113

    Article  CAS  PubMed  Google Scholar 

  • Frost RA, Caroline D (1976) Diffusion of polystyrene in a theta mixed solvent (Benzene-2-Propanol) by Photon-correlation spectroscopy. Macromolecules 10:616–618

    Article  Google Scholar 

  • Garidel P, Blume A, Wagner M (2013) Prediction of colloidal stability of high protein formulations. Pharm Dev Technol 20(3):367–374

    Article  Google Scholar 

  • Goldberg DS, Bishop SM, Shah AU, Satish HA (2011) Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational stability and colloidal stability. J Pharm Sci 100:1306–1315

    Google Scholar 

  • Jiménez M, Rivas G, Minton AP (2007) Quantitative characterization of weak self-association in concentrated solutions of immunoglobulin G via the measurement of sedimentation equilibrium and osmotic pressure. Biochemistry 46:8373–8378

    Article  PubMed  Google Scholar 

  • Kumar V, Dixit N, Zhou L, Fraunhofer W (2011) Impact of short range hydrophobic interactions and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-variable domain immunoglobulin at low and high concentrations. Int J Pharm 421:82–93

    Article  CAS  PubMed  Google Scholar 

  • Laue T (2012) Proximity energies: a framework for understanding concentrated solutions. J Mol Recognit 25:165–173

    Article  CAS  PubMed  Google Scholar 

  • Laue T, Shah BD, Ridgeway TM, Pelletier SL (1992) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, London, pp 90–125

    Google Scholar 

  • Lehermayr C, Mahler HC, Mäder K, Fischer S (2011) Assessment of net charge and protein-protein interactions of different monoclonal antibodies. J Pharm Sci 100:2551–2562

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Nguyen MDH, Andya JD, Shire SJ (2005) Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci 94:1928–1940

    Article  CAS  PubMed  Google Scholar 

  • McMillan WG Jr, Mayer JE (1945) The statistical thermodynamics of multicomponent systems. J Chem Phys 13:276–305

    Article  CAS  Google Scholar 

  • Narayanan J, Liu XY (2003) Protein interactions in undersaturated and supersaturated solutions: a study using light and x-ray scattering. Biophys J 84:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neal BL, Asthagiri D, Lenhoff AM (1998) Molecular origins of osmotic second virial coefficients of proteins. Biophys J 75:2469–2477. Holde et al., 2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neergaard MS, Kalonia DS, Parshad H, Nielsen AD, Møller EH, van de Weert M (2013) Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass-prediction of viscosity through protein-protein interaction measurements. Eur J Pharm Biopharm 49:400–410

    CAS  Google Scholar 

  • Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Sahin E, Grillo AO, Perkins MD, Roberts CJ (2010) Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci 99:4830–4848

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Hasegawa J, Kobayashi N, Kishi N, Uchiyama S, Fukui K (2012) Behavior of monoclonal antibodies: relation between the second virial coefficient (B 2) at low concentrations and aggregation propensity and viscosity at high concentrations. Pharm Res 29:397–410

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Hasegawa J, Kobayashi N, Tomitsuka T, Uchiyama S, Fukui K (2013) Effects of ionic strength and sugars on the aggregation propensity of monoclonal antibodies: influence of colloidal and conformational stabilities. Pharm Res 30:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW (2010) Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pham Sci 99:82–93

    Article  CAS  Google Scholar 

  • Saluja A, Badkar AV, Zeng DL, Kalonia DS (2007) Ultrasonic rheology of a monoclonal antibody (IgG2) solution: implications for physical stability of proteins in high concentration formulations. J Pharm Sci 96:3181–3195

    Article  CAS  PubMed  Google Scholar 

  • Saluja A, Fesinmeyer M, Hogan S, Brems DN, Gokarn YR (2010) Diffusion and sedimentation interaction parameters for measuring the second virial coefficient and their utility as predictors of protein aggregation. Biophys J 99:2657–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmit JD, He F, Mishra S, Ketchem RR, Woods CE, Kerwin BA (2014) Entanglement model of antibody viscosity. J Phys Chem B 118:5044–5049

    Article  CAS  PubMed  Google Scholar 

  • Shire SJ, Shahrokh Z, Liu J (2004) Challenges in the development of high protein concentration formulations. J Pharm Sci 93:1390–1402

    Article  CAS  PubMed  Google Scholar 

  • Singh SN, Yadav S, Shire SJ, Kalonia DS (2014) Dipole-dipole interaction in antibody solutions: correlation with viscosity behavior at high concentration. Pharm Res 31:2549–2558

    Article  CAS  PubMed  Google Scholar 

  • Sule SV, Cheung JK, Antochshuk V, Bhalla AS, Narasimhan C, Blaisdell S, Shameem M, Tessier PM (2012) Solution pH that minimizes self-association of three monoclonal antibodies is strongly dependent on ionic strength. Mol Pharm 9:744–751

    Article  CAS  PubMed  Google Scholar 

  • Tessier PM, Lenhoff AM, Sandler SI (2002) Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography. Biophys J 82:1620–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treuheit MJ, Kosky AA, Brems DN (2002) Inverse relationship of protein concentration and aggregation. Pharm Res 19:511–516

    Article  CAS  PubMed  Google Scholar 

  • van Holde, KE, Johnson C, Ho PS (2006) Physical biochemistry, Pearson Education Inc., New York

    Google Scholar 

  • Verwey EJW, Overbeck JTK (1948) Theory of stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Winzor DJ, Deszczynski M, Harding SE, Wills PR (2007) Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions. Biophys Chem 128:46–55

    Article  CAS  PubMed  Google Scholar 

  • Williams (1972) Ultracentrifugation of macromelecules: modern topics, Academic Press, New York

    Google Scholar 

  • Yadav S, Shire SJ, Kalonia DS (2010) Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J Pharm Sci 99:4812–4829

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ (2012) The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions. Mol Pharm 9:791–802

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H (1962) Concentration dependence of the frictional coefficient of polymers in solution. J Chem Phys 36:2995–3001

    Article  CAS  Google Scholar 

  • Zhang J, Liu XY (2003) Effect of protein-protein interactions on protein aggregation kinetics. J Chem Phys 119:10972–10976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Uchiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Saito, S., Uchiyama, S. (2016). Biopharmaceutical Evaluation of Intermolecular Interactions by AUC-SE. In: Uchiyama, S., Arisaka, F., Stafford, W., Laue, T. (eds) Analytical Ultracentrifugation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55985-6_21

Download citation

Publish with us

Policies and ethics