Skip to main content

Stem/Progenitor Cells in the Human Endometrium

  • Chapter
  • First Online:
  • 746 Accesses

Abstract

Adult stem cells, also termed tissue stem cells or somatic stem cells, are rare populations residing in almost all adult tissues. They can self-renew and possess the capacity for multi-lineage differentiation. They play critical roles in tissue homeostasis, regeneration, repair, and response to injury. It has long been believed that stem/progenitor cells exist in the human endometrium based on its unique capacity to regenerate and regress cyclically in response to fluctuating ovarian steroid hormones during each menstrual cycle throughout a reproductive life. There is increasing evidence that human endometrium contains small populations of epithelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and side population cells (SPCs) that are likely responsible for its monthly regeneration and tissue homeostasis. This review summarizes the identification of EPCs, MSCs, and SPCs and discusses how they are involved in the physiological remodeling and regeneration of the human endometrium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kahn M. Wnt signaling in stem cells and tumor stem cells. Semin Reprod Med. 2015;33(5):317–25. doi:10.1055/s-0035-1558404.

    Article  CAS  PubMed  Google Scholar 

  2. Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–53. doi:10.1182/blood-2008-08-078220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2015. doi:10.3727/096368915X689622.

    PubMed  Google Scholar 

  4. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. doi:10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  5. Daley GQ. Stem cells and the evolving notion of cellular identity. Philos Trans R Soc Lond Ser B Biol Sci. 2015; 370(1680). doi:10.1098/rstb.2014.0376.

    Google Scholar 

  6. Seaberg RM, van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 2003;26(3):125–31. doi:10.1016/S0166-2236(03)00031-6.

    Article  CAS  PubMed  Google Scholar 

  7. Prianishnikov VA. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception. 1978;18(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  8. Padykula HA, Coles LG, Okulicz WC, Rapaport SI, McCracken JA, King Jr NW, et al. The basalis of the primate endometrium: a bifunctional germinal compartment. Biol Reprod. 1989;40(3):681–90.

    Article  CAS  PubMed  Google Scholar 

  9. Padykula HA. Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci. 1991;622:47–56.

    Article  CAS  PubMed  Google Scholar 

  10. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13(1):87–101.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka M, Kyo S, Kanaya T, Yatabe N, Nakamura M, Maida Y, et al. Evidence of the monoclonal composition of human endometrial epithelial glands and mosaic pattern of clonal distribution in luminal epithelium. Am J Pathol. 2003;163(1):295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brenner RM, Slayden OD, Rodgers WH, Critchley HO, Carroll R, Nie XJ, et al. Immunocytochemical assessment of mitotic activity with an antibody to phosphorylated histone H3 in the macaque and human endometrium. Hum Reprod. 2003;18(6):1185–93.

    Article  CAS  PubMed  Google Scholar 

  13. Gurung S, Deane JA, Masuda H, Maruyama T, Gargett CE. Stem cells in endometrial physiology. Semin Reprod Med. 2015;33(5):326–32. doi:10.1055/s-0035-1558405.

    Article  CAS  PubMed  Google Scholar 

  14. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2015. doi:10.1093/humupd/dmv051.

    PubMed  PubMed Central  Google Scholar 

  15. Masuda H, Maruyama T, Gargett CE, Miyazaki K, Matsuzaki Y, Okano H, et al. Endometrial side population cells: potential adult stem/progenitor cells in endometrium. Biol Reprod. 2015;93(4):84. doi:10.1095/biolreprod.115.131490.

    Article  PubMed  Google Scholar 

  16. Maruyama T. Endometrial stem/progenitor cells. J Obstet Gynaecol Res. 2014;40(9):2015–22. doi:10.1111/jog.12501.

    Article  PubMed  Google Scholar 

  17. van Os R, Kamminga LM, de Haan G. Stem cell assays: something old, something new, something borrowed. Stem Cells. 2004;22(7):1181–90.

    Article  PubMed  Google Scholar 

  18. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70(6):1738–50.

    Article  CAS  PubMed  Google Scholar 

  19. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80(6):1136–45. doi:10.1095/biolreprod.108.075226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valentijn AJ, Palial K, Al-Lamee H, Tempest N, Drury J, Von Zglinicki T, et al. SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod. 2013;28(10):2695–708. doi:10.1093/humrep/det285.

    Article  CAS  PubMed  Google Scholar 

  21. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):2903–11. doi:10.1093/humrep/dem265.

    Article  CAS  PubMed  Google Scholar 

  22. Schwab KE, Hutchinson P, Gargett CE. Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod. 2008;23(4):934–43. doi:den051 [pii] 10.1093/humrep/den051.

    Article  CAS  PubMed  Google Scholar 

  23. Masuda H, Anwar SS, Buhring HJ, Rao JR, Gargett CE. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012;21(10):2201–14. doi:10.3727/096368911X637362.

    Article  PubMed  Google Scholar 

  24. Spitzer TL, Rojas A, Zelenko Z, Aghajanova L, Erikson DW, Barragan F, et al. Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol Reprod. 2012;86(2):58. doi:10.1095/biolreprod.111.095885.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Murakami K, Lee YH, Lucas ES, Chan YW, Durairaj RP, Takeda S, et al. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology. 2014;155(11):4542–53. doi:10.1210/en.2014-1370.

    Article  PubMed  Google Scholar 

  26. Lucas ES, Dyer NP, Murakami K, Lee YH, Chan YW, Grimaldi G, et al. Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells. 2015. doi:10.1002/stem.2222.

    PubMed  Google Scholar 

  27. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.

    Article  CAS  PubMed  Google Scholar 

  28. Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24(1):3–12.

    Article  PubMed  Google Scholar 

  29. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.

    Article  CAS  PubMed  Google Scholar 

  30. Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, et al. Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS ONE. 2010;5(4), e10387. doi:10.1371/journal.pone.0010387.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, et al. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22(5):1214–23.

    Article  CAS  PubMed  Google Scholar 

  32. Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T. Side population cells contribute to the genesis of human endometrium. Fertil Steril. 2008;90(4 Suppl):1528–37. doi:10.1016/j.fertnstert.2007.08.005.

    Article  PubMed  Google Scholar 

  33. Cervello I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PT, et al. Reconstruction of endometrium from human endometrial side population cell lines. PLoS ONE. 2011;6(6), e21221. doi:10.1371/journal.pone.0021221 PONE-D-11-04638 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cervello I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martinez-Conejero JA, Galan A, et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS ONE. 2010;5(6), e10964. doi:10.1371/journal.pone.0010964.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  37. Bratincsak A, Brownstein MJ, Cassiani-Ingoni R, Pastorino S, Szalayova I, Toth ZE, et al. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells. 2007;25(11):2820–6. doi:10.1634/stemcells.2007-0301.

    Article  CAS  PubMed  Google Scholar 

  38. Ikoma T, Kyo S, Maida Y, Ozaki S, Takakura M, Nakao S, et al. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol. 2009;201(6):608 e1–8. doi:10.1016/j.ajog.2009.07.026.

    Article  PubMed  Google Scholar 

  39. Cervello I, Gil-Sanchis C, Mas A, Faus A, Sanz J, Moscardo F, et al. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS ONE. 2012;7(1), e30260. doi:10.1371/journal.pone.0030260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim JY, Tavare S, Shibata D. Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions. Proc Natl Acad Sci U S A. 2005;102(49):17739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26(7):1695–704. doi:10.1634/stemcells.2007-0826.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Huang B. Peripheral blood stem cells: phenotypic diversity and potential clinical applications. Stem Cell Rev. 2012;8(3):917–25. doi:10.1007/s12015-012-9361-z.

    Article  PubMed  Google Scholar 

  43. Henriet P, Gaide Chevronnay HP, Marbaix E. The endocrine and paracrine control of menstruation. Mol Cell Endocrinol. 2012;358(2):197–207. doi:10.1016/j.mce.2011.07.042.

    Article  CAS  PubMed  Google Scholar 

  44. Novak E, Te linde RW. The endometrium of the menstruating uterus. JAMA. 1924;83:900–6.

    Article  Google Scholar 

  45. Ferenczy A. Studies on the cytodynamics of human endometrial regeneration. I. Scanning electron microscopy. Am J Obstet Gynecol. 1976;124(1):64–74.

    Article  CAS  PubMed  Google Scholar 

  46. Ludwig H, Metzger H, Frauli M. Endometrium: tissue remodelling and regeneration. In: d’Arcangues C, Fraser IS, Newton JR, Odlind V, editors. Contraception and mechanisms of endometrial bleeding. Cambridge: Cambridge University Press; 1990. p. 441–66.

    Google Scholar 

  47. Salamonsen LA. Tissue injury and repair in the female human reproductive tract. Reproduction. 2003;125(3):301–11.

    Article  CAS  PubMed  Google Scholar 

  48. Maybin J, Critchley H. Repair and regeneration of the human endometrium. Expert Rev Obstet Gynecol. 2009;4:283–98.

    Article  Google Scholar 

  49. Garry R, Hart R, Karthigasu KA, Burke C. A re-appraisal of the morphological changes within the endometrium during menstruation: a hysteroscopic, histological and scanning electron microscopic study. Hum Reprod. 2009;24(6):1393–401. doi:10.1093/humrep/dep036.

    Article  CAS  PubMed  Google Scholar 

  50. Garry R, Hart R, Karthigasu KA, Burke C. Structural changes in endometrial basal glands during menstruation. BJOG. 2010;117(10):1175–85. doi:10.1111/j.1471-0528.2010.02630.x.

    Article  CAS  PubMed  Google Scholar 

  51. Gaide Chevronnay HP, Galant C, Lemoine P, Courtoy PJ, Marbaix E, Henriet P. Spatiotemporal coupling of focal extracellular matrix degradation and reconstruction in the menstrual human endometrium. Endocrinology. 2009;150(11):5094–105. doi:10.1210/en.2009-0750.

    Article  PubMed  Google Scholar 

  52. Huang CC, Orvis GD, Wang Y, Behringer RR. Stromal-to-epithelial transition during postpartum endometrial regeneration. PLoS ONE. 2012;7(8), e44285. doi:10.1371/journal.pone.0044285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patterson AL, Zhang L, Arango NA, Teixeira J, Pru JK. Mesenchymal-to-epithelial transition contributes to endometrial regeneration following natural and artificial decidualization. Stem Cells Dev. 2013;22(6):964–74. doi:10.1089/scd.2012.0435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miyazaki K, Maruyama T, Masuda H, Yamasaki A, Uchida S, Oda H, et al. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay. PLoS ONE. 2012;7(12), e50749. doi:10.1371/journal.pone.0050749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010;140(1):11–22. doi:REP-09-0438 [pii] 10.1530/REP-09-0438.

    Article  CAS  PubMed  Google Scholar 

  56. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008;1127:106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Maruyama T, Yoshimura Y. Stem cell theory for the pathogenesis of endometriosis. Front Biosci. 2012;4:2854–63.

    Google Scholar 

  58. Maruyama T. Role of stem cells in the pathogenesis of endometriosis. In: Harada T, editor. Endometriosis: pathogenesis and treatment. Tokyo: Springer Japan; 2014. p. 33–48.

    Google Scholar 

  59. Hufnagel D, Li F, Cosar E, Krikun G, Taylor HS. The role of stem cells in the etiology and pathophysiology of endometriosis. Semin Reprod Med. 2015;33(5):333–40. doi:10.1055/s-0035-1564609.

    Article  CAS  PubMed  Google Scholar 

  60. Masuda H, Maruyama T, Hiratsu E, Yamane J, Iwanami A, Nagashima T, et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/γc null immunodeficient mice. Proc Natl Acad Sci U S A. 2007;104(6):1925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Masuda H, Okano HJ, Maruyama T, Yoshimura Y, Okano H, Matsuzaki Y. In vivo imaging in humanized mice. Curr Top Microbiol Immunol. 2008;324:179–96.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I wish to thank Hirotaka Masuda, Kaoru Miyazaki, Masanori Ono, Takashi Kajitani, Hiroshi Uchida, and the other members of my research group for their contributions, assistance, and discussions. I sincerely thank Hideyuki Okano and Yumi Matsuzaki for their generous collaboration. I also thank Rika Shibata for secretarial assistance. This work was partly supported by grant-in-aids from the Japan Society for the Promotion of Science (to T.M and Y.Y.), a grant-in-aid from Keio University Sakaguchi-Memorial Medical Science Fund (to T.M.), and a grant-in-aid from the Japan Medical Association (to T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Maruyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Maruyama, T. (2016). Stem/Progenitor Cells in the Human Endometrium. In: Kanzaki, H. (eds) Uterine Endometrial Function. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55972-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55972-6_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55970-2

  • Online ISBN: 978-4-431-55972-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics