Assessing Receptivity of the Human Endometrium to Improve Outcomes of Fertility Treatment



Despite considerable improvements in assessment of embryo quality in infertility clinics, outcomes in terms of take-home baby rate have not improved substantially. Failure of the endometrium to achieve receptivity and the timing of the receptive period are now recognised as important issues in the success of IVF. Indeed, immunohistochemical and morphological studies show that the endometrium is highly disturbed in any cycle in which ovulation induction is performed, leading to recommendations that all embryos be frozen and replaced in a non-stimulation cycle. Assessment of any woman for endometrial receptivity either in cycles prior to treatment or testing for the potential for an embryo to implant in the cycle of transfer is urgently needed. However, careful consideration must be given to issues such as sampling, timing and rapid delivery of results as well as the best biomarkers, to enable in-clinic decision-making. Here these issues are considered, along with how endometrial receptivity testing might best be performed to optimise outcomes of infertility treatment.


Endometrial receptivity Biomarkers IVF success 



Work in the authors’ laboratory is supported by the National Health and Medical Research Council of Australia by Fellowship (#1002028) and project (#1047056) grants, the Monash IVF Research and Education Foundation, the Merck Serono grants for Fertility Innovation and the Victorian Government’s Operational Infrastructure Program.


  1. 1.
    Betteridge KJ. An historical look at embryo transfer. J Reprod Fertil. 1981;62(1):1–13.CrossRefPubMedGoogle Scholar
  2. 2.
    Rowson LE, Moor RM. Embryo transfer in the sheep: the significance of synchronizing oestrus in the donor and recipient animal. J Reprod Fertil. 1966;11(2):207–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Psychoyos A. Uterine receptivity for nidation. Ann N Y Acad Sci. 1986;476:36–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Hertig A, Rock J, Adams E. A description of 34 human ova within the first 17 days of development. Am J Anat. 1956;98(3):435–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Navot D, Bergh PA, Williams M, Garrisi GJ, Guzman I, Sandler B, et al. An insight into early reproductive processes through the in vivo model of ovum donation. J Clin Endocrinol Metab. 1991;72(2):408–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340(23):1796–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Tierney EP, Tulac S, Huang ST, Giudice LC. Activation of the protein kinase A pathway in human endometrial stromal cells reveals sequential categorical gene regulation. Physiol Genomics. 2003;16(1):47–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K, et al. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril. 2004;81(5):1333–43.CrossRefPubMedGoogle Scholar
  9. 9.
    Evans GE, Martinez-Conejero JA, Phillipson GT, Simon C, McNoe LA, Sykes PH, et al. Gene and protein expression signature of endometrial glandular and stromal compartments during the window of implantation. Fertil Steril. 2012;97(6):1365–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Salamonsen LA, Nie G, Hannan NJ, Dimitriadis E, Society for Reproductive Biology Founders’ Lecture. Preparing fertile soil: the importance of endometrial receptivity. Reprod Fertil Dev. 2009;21(7):923–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol. 2003;178(3):357–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Brosens J, Salker M, Teklenburg G, Nautiyal J, Salter S, Lucas E, et al. Uterine selection of human embryos at implantation. Sci Rep. 2014;4:3984.CrossRefGoogle Scholar
  13. 13.
    Evans J, Salamonsen L, Menkhorst E, Dimitriadis E. Dynamic changes in hyperglycosylated human chorionic gonadotrophin throughout the first trimester of pregnancy and its role in early placentation. Hum Reprod. 2015;30(5):1029–38.CrossRefPubMedGoogle Scholar
  14. 14.
    Weimar C, Kavelaars A, Brosens J, Gellersen B, de Vreeden-Elbertse J, Heijnen C, et al. Endometrial stromal cells of women with recurrent miscarriage fail to discriminate between high- and low-quality human embryos. PLoS One. 2012;7(7):e41424.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Teklenburg G, Salker MS, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010;5(4):e10258.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schwenke M, Knofler M, Velicky P, Weimar C, Kruse M, Samalecos A, et al. Control of human endometrial stromal cell motility by PDGF-BB, HB-EGF and trophoblast-secreted factors. PLoS One. 2013;8(1):e54336.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bonduelle ML, Dodd R, Liebaers I, Van Steirteghem A, Williamson R, Akhurst R. Chorionic gonadotrophin-beta mRNA, a trophoblast marker, is expressed in human 8-cell embryos derived from tripronucleate zygotes. Hum Reprod. 1988;3(7):909–14.PubMedGoogle Scholar
  18. 18.
    Kane N, Kelly RW, Saunders P, Critchley H. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology. 2009;150(6):2882–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Licht P, Fluhr H, Neuwinger J, Wallwiener D, Wildt L. Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol Cell Endocrinol. 2007;269(1–2):85–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Evans J, Salamonsen L. Too much of a good thing? Experimental evidence suggests prolonged exposure to hCG is detrimental to endometrial receptivity. Hum Reprod. 2013;28(6):1610–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Lopata A, Oliva K, Stanton PG, Robertson DM. Analysis of chorionic gonadotrophin secreted by cultured human blastocysts. Mol Hum Reprod. 1997;3(6):517–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Licht P, Losch A, Dittrich R, Neuwinger J, Siebzehnrubl E, Wildt L. Novel insights into human endometrial paracrinology and embryo-maternal communication by intrauterine microdialysis. Hum Reprod Update. 1998;4(5):532–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Sherwin JR, Sharkey AM, Cameo P, Mavrogianis PM, Catalano RD, Edassery S, et al. Identification of novel genes regulated by chorionic gonadotropin in baboon endometrium during the window of implantation. Endocrinology. 2007;148(2):618–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Paiva P, Hannan NJ, Hincks C, Meehan KL, Pruysers E, Dimitriadis E, et al. Human chorionic gonadotrophin regulates FGF2 and other cytokines produced by human endometrial epithelial cells, providing a mechanism for enhancing endometrial receptivity. Hum Reprod. 2011;26(5):1153–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Evans J, Catalano RD, Brown P, Sherwin R, Critchley HO, Fazleabas AT, et al. Prokineticin 1 mediates fetal-maternal dialogue regulating endometrial leukemia inhibitory factor. FASEB J. 2009;23(7):2165–75.Google Scholar
  26. 26.
    Thouas G, Dominguez F, Green M, Vilella F, Simon C, Gardner D. Soluble ligands and their receptors in human embryo development and implantation. Endocr Rev. 2015;36(1):92–130.CrossRefPubMedGoogle Scholar
  27. 27.
    Robertson S, Chin P, Schjenken J, Thompson J. Female tract cytokines and developmental programming in embryos. In: Leese H, Brison D, editors. Cell signalling during mammalian early embryo development, Advances in Experimental Medicine and Biology, vol. 843. New York: Springer; 2015. p. 173–213.CrossRefGoogle Scholar
  28. 28.
    Ziebe S, Loft A, Povlsen B, Erb K, Agerholm I, Aasted M, et al. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertil Steril. 2013;99:1600–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Hannan NJ, Paiva P, Meehan KL, Rombauts LJ, Gardner DK, Salamonsen LA. Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF as a key regulator of embryo implantation. Endocrinology. 2011;152(12):4948–56.CrossRefPubMedGoogle Scholar
  30. 30.
    Binder N, Evans J, Gardner D, Salamonsen L, Hannan N. Endometrial signals improve embryo outcome: functional role of vascular endothelial growth factor isoforms on embryo development and implantation in mice. Hum Reprod. 2014;29(10):2278–86.CrossRefPubMedGoogle Scholar
  31. 31.
    Macaldowie A, Wang Y, Chambers G, Sullivan E. Assisted reproductive technology in Australia and New Zealand 2011. Sydney: National Perinatal Epidemiology and Statistics Unit, The University of New South Wales, Australia; 2013.Google Scholar
  32. 32.
    Ferraretti A, Goossens V, Kupka M, Bhattacharya S, de Mouzon J, Castilla J, et al. Assisted reproductive technology in Europe, 2009: results generated from European registers by ESHRE. Hum Reprod. 2013;28(9):2318–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Society for Assisted Reproductive Technology: IVF success rate reports. 2011.
  34. 34.
    Venetis C, Kolibianakis E, Bosdou J, Tarlatzis B. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60,000 cycles. Hum Reprod Update. 2013;19:433–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Labarta E, Martinez-Conejero J, Alama P, Horcajadas J, Pellicer A, Simon C, et al. Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011;26(7):1813–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Li R, Qiao J, Wang L, Li L, Zhen X, Liu P, et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol. 2011;9:29.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Haouzi D, Bissonnette L, Gala A, Assou S, Entezami F, Perrochia H, et al. Endometrial receptivity profile in patients with premature progesterone elevation on the day of HCG administration. Biomed Res Int. 2014;epub Apr 28.Google Scholar
  38. 38.
    Legro R, Ary B, Paulson R, Stanczyk F, Sauer M. Premature lutenization as detected by elevated serum progesterone is associated with a higher pregnancy rate in donor oocyte in-vitro fertilization. Hum Reprod. 1993;8(9):1506–11.PubMedGoogle Scholar
  39. 39.
    Melo M, Meseguer M, Garrido N, Bosch E, Pellicer A, Remohi J. The significance of premature lutenization in an oocyte-donation programme. Hum Reprod. 2006;21(6):1503–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–3.PubMedGoogle Scholar
  41. 41.
    Chetkowski R, Kiltz R, Salyer W. In premature luteinization, progesterone induces secretory transformation of the endometrium without impairment of embryo viability. Fertil Steril. 1997;68(2):292–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Ubaldi F, Bourgain C, Tournaye H, Smitz J, Van Steirteghem A, Devroey P. Endometrial evaluation by aspiration biopsy on the day of oocyte retrieval in the embryo transfer cycles in patients with serum progesterone rise during the follicular phase. Fertil Steril. 1997;67(3):521–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Kolibianakis EM, Devroey P. The luteal phase after ovarian stimulation. Reprod Biomed Online. 2002;5(Suppl 1(3)):26–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Van Vaerenbergh I, Van Lommel L, Ghislain V, In’t Veld P, Schuit F, Fatemi HM, et al. In GnRH antagonist/rec-FSH stimulated cycles, advanced endometrial maturation on the day of oocyte retrieval correlates with altered gene expression. Hum Reprod. 2009;24(5):1085–91.CrossRefPubMedGoogle Scholar
  45. 45.
    Horcajadas J, Minguez P, Dopazo J, Esteban F, Dominquez F, Giudice L, et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab. 2008;93(11):4500–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Evans J, Hannan NJ, Hincks C, Rombauts LJ, Salamonsen LA. Defective soil for a fertile seed? Altered endometrial development is detrimental to pregnancy success. PLoS One. 2012;7(12):e53098.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shapiro B, Daneshmand S, Garner F, Aguirre M, Hudson C. Freeze-all can be a superior therapy to another fresh cycle in patients with prior fresh blastocyst implantation failure. Reprod Biomed Online. 2014;29(3):286–90.CrossRefPubMedGoogle Scholar
  48. 48.
    Evans J, Hannan N, Edgell T, Vollenhoven B, Lutjen P, Osianlis T, et al. Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;20(6):808–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Altmae S, Esteban F, Stavreus-Evers A, Simon C, Giudice LC, Lessey B, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2014;20(1):12–28.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nastri C, Lensen S, Gibreel A, Raine-Fenning N, Ferriani R, Bhattacharya S, et al. Endometrial injury in women undergoing assisted reproductive techniques. Cochrane Database Syst Rev. 2015;3:CD009517.PubMedGoogle Scholar
  51. 51.
    Hannan NJ, Nie G, Rainzcuk A, Rombauts LJ, Salamonsen LA. Uterine lavage or aspirate: which view of the intrauterine environment? Reprod Sci. 2012;19:1125–32.CrossRefPubMedGoogle Scholar
  52. 52.
    van der Gaast MH, Beier-Hellwig K, Fauser BC, Beier HM, Macklon NS. Endometrial secretion aspiration prior to embryo transfer does not reduce implantation rates. Reprod Biomed Online. 2003;7(1):105–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Diaz-Gimeno P, Ruiz-Alonso M, Blesa D, Bosch N, Martinez-Conejero JA, Alama P, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99(2):508–17.CrossRefPubMedGoogle Scholar
  54. 54.
    Lessey BA. The pathologists are free to go, or are they? Fertil Steril. 2013;99(2):350–1.CrossRefPubMedGoogle Scholar
  55. 55.
    Haouzi D, Dechaud H, Assou S, De Vos J, Hamamah S. Insights into human endometrial receptivity from transcriptomic and proteomic data. Reprod Biomed Online. 2012;24(1):23–34.CrossRefPubMedGoogle Scholar
  56. 56.
    Ruiz-Alonso M, Blesa D, Simon C. The genomics of the human endometrium. Biochim Biophys Acta. 2012;1822(12):1931–42.CrossRefPubMedGoogle Scholar
  57. 57.
    Altmae S, Martinez-Conejero JA, Salumets A, Simon C, Horcajadas JA, Stavreus-Evers A. Endometrial gene expression analysis at the time of embryo implantation in women with unexplained infertility. Mol Hum Reprod. 2010;16(3):178–87.CrossRefPubMedGoogle Scholar
  58. 58.
    Ledee N, Munaut C, Aubert J, Serazin V, Rahmati M, Chaouat G, et al. Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J Pathol. 2011;225(4):554–64.CrossRefPubMedGoogle Scholar
  59. 59.
    Othman R, Omar MH, Shan LP, Shafiee MN, Jamal R, Mokhtar NM. Microarray profiling of secretory-phase endometrium from patients with recurrent miscarriage. Reprod Biol. 2012;12(2):183–99.CrossRefPubMedGoogle Scholar
  60. 60.
    Borthwick JM, Charnock-Jones DS, Tom BD, Hull ML, Teirney R, Phillips SC, et al. Determination of the transcript profile of human endometrium. Mol Hum Reprod. 2003;9(1):19–33.CrossRefPubMedGoogle Scholar
  61. 61.
    Carson DD, Lagow E, Thathiah A, Al-Shami R, Farach-Carson MC, Vernon M, et al. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002;8(9):871–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Haouzi D, Assou S, Mahmoud K, Tondeur S, Reme T, Hedon B, et al. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24(6):1436–45.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002;143(6):2119–38.CrossRefPubMedGoogle Scholar
  64. 64.
    Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ponnampalam AP, Weston GC, Trajstman AC, Susil B, Rogers PA. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10(12):879–93.CrossRefPubMedGoogle Scholar
  66. 66.
    Riesewijk A, Martin J, van Os R, Horcajadas JA, Polman J, Pellicer A, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod. 2003;9(5):253–64.CrossRefPubMedGoogle Scholar
  67. 67.
    Talbi S, Hamilton AE, Vo KC, Tulac S, Overgaard MT, Dosiou C, et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147(3):1097–121.CrossRefPubMedGoogle Scholar
  68. 68.
    Tseng LH, Chen I, Chen MY, Yan H, Wang CN, Lee CL. Genome-based expression profiling as a single standardized microarray platform for the diagnosis of endometrial disorder: an array of 126-gene model. Fertil Steril. 2010;94(1):114–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60.CrossRefPubMedGoogle Scholar
  70. 70.
    Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148(8):3814–26.CrossRefPubMedGoogle Scholar
  71. 71.
    Chen JI, Hannan NJ, Mak Y, Nicholls PK, Zhang J, Rainczuk A, et al. Proteomic characterization of midproliferative and midsecretory human endometrium. J Proteome Res. 2009;8(4):2032–44.CrossRefPubMedGoogle Scholar
  72. 72.
    Nie G, Li Y, Wang M, Liu YX, Findlay JK, Salamonsen LA. Inhibiting uterine PC6 blocks embryo implantation: an obligatory role for a proprotein convertase in fertility. Biol Reprod. 2005;72(4):1029–36.CrossRefPubMedGoogle Scholar
  73. 73.
    Heng S, Cervero A, Simon C, Stephens AN, Li Y, Zhang J, et al. Proprotein convertase 5/6 is critical for embryo implantation in women: regulating receptivity by cleaving EBP50, modulating ezrin binding, and membrane-cytoskeletal interactions. Endocrinology. 2011;152(12):5041–52.CrossRefPubMedGoogle Scholar
  74. 74.
    Heng S, Paule S, Ying L, Rombauts L, Vollenhoven B, Salamonsen L, et al. Post-translational removal of α-dystroglycan N-terminus by PC5/6 cleavage is important for uterine preparation for embryo implantation in women. FASEB J. 2015;29(9):4011–22.CrossRefPubMedGoogle Scholar
  75. 75.
    Kilpatrick LM, Stephens AN, Hardman BM, Salamonsen LA, Li Y, Stanton PG, et al. Proteomic identification of caldesmon as a physiological substrate of proprotein convertase 6 in human uterine decidual cells essential for pregnancy establishment. J Proteome Res. 2009;8(11):4983–92.CrossRefPubMedGoogle Scholar
  76. 76.
    Edgell T, Rombauts L, Salamonsen L. Assessing receptivity in the endometrium: the need for a rapid, non-invasive test. Reprod Biomed Online. 2013;27(5):486–96.CrossRefPubMedGoogle Scholar
  77. 77.
    Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, et al. Developmental biology of uterine glands. Biol Reprod. 2001;65(5):1311–23.CrossRefPubMedGoogle Scholar
  78. 78.
    Dunlap KA, Filant J, Hayashi K, Rucker 3rd EB, Song G, Deng JM, et al. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biol Reprod. 2011;85(2):386–96.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hannan NJ, Stephens AN, Rainczuk A, Hincks C, Rombauts LJ, Salamonsen LA. 2D-DiGE analysis of the human endometrial secretome reveals differences between receptive and nonreceptive states in fertile and infertile women. J Proteome Res. 2010;9(12):6256–64.CrossRefPubMedGoogle Scholar
  80. 80.
    Reese J, Zhao X, Ma W, Brown N, Maziasz T, Dey S. Comparative analysis of pharmacologic and/or genetic disruption of cyclooxygenase-1 and cyclooxygenase-2 function in female reproduction in mice. Endocrinology. 2001;142(7):3198–206.PubMedGoogle Scholar
  81. 81.
    Berlanga O, Bradshaw H, Vilella-Mitjana F, Garrido-Gomez T, Simon C. How endometrial secretomics can help in predicting implantation. Placenta. 2011;32 Suppl 3:S271–5.CrossRefPubMedGoogle Scholar
  82. 82.
    Vilella F, Ramirez L, Berlanga O, Martinez S, Alama P, Mesequer M, et al. PGE2 and PGF2a concentrations in human endometrial fluid as biomarkers for embryonic implantation. J Clin Endocrinol Metab. 2013;98(10):4123–32.CrossRefPubMedGoogle Scholar
  83. 83.
    Heng S, Hannan NJ, Rombauts LJ, Salamonsen LA, Nie G. PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility. Hum Reprod. 2011;26(4):840–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Lessey BA, Castelbaum AJ, Sawin SW, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril. 1995;63(3):535–42.CrossRefPubMedGoogle Scholar
  85. 85.
    Dominguez F, Garrido-Gomez T, Lopez JA, Camafeita E, Quinonero A, Pellicer A, et al. Proteomic analysis of the human receptive versus non-receptive endometrium using differential in-gel electrophoresis and MALDI-MS unveils stathmin 1 and annexin A2 as differentially regulated. Hum Reprod. 2009;24(10):2607–17.CrossRefPubMedGoogle Scholar
  86. 86.
    Garrido-Gomez T, Quinonero A, Antunez O, Diaz-Gimeno P, Bellver J, Simon C, et al. Deciphering the proteomic signature of human endometrial receptivity. Hum Reprod. 2014;29(9):1957–67.CrossRefPubMedGoogle Scholar
  87. 87.
    van der Gaast MH, Macklon NS, Beier-Hellwig K, Krusche CA, Fauser BC, Beier HM, et al. The feasibility of a less invasive method to assess endometrial maturation – comparison of simultaneously obtained uterine secretion and tissue biopsy. Br J Obstet Gynecol. 2009;116(2):304–12.CrossRefGoogle Scholar
  88. 88.
    Scotchie J, Fritz M, Mocanu M, Lessey B, Young SL. Proteomic analysis of the luteal endometrial secretome. Reprod Sci. 2009;16(9):883–93.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Centre for Reproductive HealthHudson Institute of Medical ResearchClaytonAustralia
  2. 2.Department of Obstetrics and GynaecologyMonash UniversityMelbourneAustralia
  3. 3.Women’s and Children’s ProgrammeMonash HealthMelbourneAustralia
  4. 4.Monash IVFMelbourneAustralia

Personalised recommendations