Advertisement

Uterine Receptivity in Mouse Embryo Implantation

  • Yasushi HirotaEmail author
Chapter

Abstract

A competent blastocyst and a receptive uterus are two critical components for successful embryo implantation. Currently, mouse models are the most powerful tools to understand mechanisms by which acquisition of uterine receptivity takes place. Based on the previous studies performed by us and others, pre-receptive stromal proliferation and epithelial differentiation regulated by ovarian hormones, which we call endometrial proliferation-differentiation switching (PDS), can be a potent marker of uterine receptivity. Molecular interactions between the uterus and the blastocysts, which are followed by the acquisition of uterine receptivity, allow the subsequent implantation processes such as attachment reaction and decidualization. This chapter shows detailed molecular mechanisms for successful implantation, focusing on uterine receptivity and referring to the mouse in vivo evidence.

Keywords

Blastocyst implantation Uterine receptivity Ovarian hormones Proliferation-differentiation switching Cytokines Growth factors 

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant (Project Numbers: 24689062, 26670713, 26112506, 26112703, 40598653), the Cell Science Research Foundation, and GSK Japan Research Grant.

References

  1. 1.
    Egashira M, Hirota Y. Uterine receptivity and embryo-uterine interactions in embryo implantation: lessons from mice. Reprod Med Biol. 2013;12(4):127–32. doi: 10.1007/s12522-013-0153-1.CrossRefGoogle Scholar
  2. 2.
    Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, et al. Molecular cues to implantation. Endocr Rev. 2004;25(3):341–73. doi: 10.1210/er.2003-0020.CrossRefPubMedGoogle Scholar
  3. 3.
    Urman B, Yakin K, Balaban B. Recurrent implantation failure in assisted reproduction: how to counsel and manage. A. General considerations and treatment options that may benefit the couple. Reprod Biomed Online. 2005;11(3):371–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–67. doi: 10.1038/nm.3012.CrossRefPubMedGoogle Scholar
  5. 5.
    Paria BC, Lim H, Wang XN, Liehr J, Das SK, Dey SK. Coordination of differential effects of primary estrogen and catecholestrogen on two distinct targets mediates embryo implantation in the mouse. Endocrinology. 1998;139(12):5235–46. doi: 10.1210/endo.139.12.6386.PubMedGoogle Scholar
  6. 6.
    Chaen T, Konno T, Egashira M, Bai R, Nomura N, Nomura S, et al. Estrogen-dependent uterine secretion of osteopontin activates blastocyst adhesion competence. PLoS One. 2012;7(11):e48933. doi: 10.1371/journal.pone.0048933.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hirota Y, Cha J, Dey SK. Revisiting reproduction: Prematurity and the puzzle of progesterone resistance. Nat Med. 2010;16(5):529–31. doi: 10.1038/nm0510-529.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–99. doi: 10.1038/nrg1808.CrossRefPubMedGoogle Scholar
  9. 9.
    Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr CA, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9(18):2266–78.CrossRefPubMedGoogle Scholar
  10. 10.
    Conti L, Sipione S, Magrassi L, Bonfanti L, Rigamonti D, Pettirossi V, et al. Shc signaling in differentiating neural progenitor cells. Nat Neurosci. 2001;4(6):579–86. doi: 10.1038/88395.CrossRefPubMedGoogle Scholar
  11. 11.
    Dugan LL, Kim JS, Zhang Y, Bart RD, Sun Y, Holtzman DM, et al. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem. 1999;274(36):25842–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38(2):228–33. doi: 10.1038/ng1725.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Garcia AJ, Vega MD, Boettiger D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell. 1999;10(3):785–98.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Haraguchi H, Saito-Fujita T, Hirota Y, Egashira M, Matsumoto L, Matsuo M, et al. MicroRNA-200a locally attenuates progesterone signaling in the cervix, preventing embryo implantation. Mol Endocrinol. 2014;28(7):1108–17. doi: 10.1210/me.2014-1097.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Daikoku T, Cha J, Sun X, Tranguch S, Xie H, Fujita T, et al. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell. 2011;21(6):1014–25. doi: 10.1016/j.devcel.2011.09.010.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li Q, Kannan A, DeMayo FJ, Lydon JP, Cooke PS, Yamagishi H, et al. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science. 2011;331(6019):912–6. doi: 10.1126/science.1197454.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tranguch S, Wang H, Daikoku T, Xie H, Smith DF, Dey SK. FKBP52 deficiency-conferred uterine progesterone resistance is genetic background and pregnancy stage specific. J Clin Invest. 2007;117(7):1824–34. doi: 10.1172/JCI31622.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A. 2003;100(17):9744–9. doi: 10.1073/pnas.1732707100.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 2000;289(5485):1751–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Tranguch S, Cheung-Flynn J, Daikoku T, Prapapanich V, Cox MB, Xie H, et al. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A. 2005;102(40):14326–31. doi: 10.1073/pnas.0505775102.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tranguch S, Smith DF, Dey SK. Progesterone receptor requires a co-chaperone for signalling in uterine biology and implantation. Reprod Biomed Online. 2007;14(Spec No 1):39–48. doi: 10.1016/S1472-6483(10)61457-5.PubMedGoogle Scholar
  22. 22.
    Matsumoto H, Zhao X, Das SK, Hogan BL, Dey SK. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Dev Biol. 2002;245(2):280–90. doi: 10.1006/dbio.2002.0645.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee K, Jeong J, Kwak I, Yu CT, Lanske B, Soegiarto DW, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet. 2006;38(10):1204–9. doi: 10.1038/ng1874.CrossRefPubMedGoogle Scholar
  24. 24.
    Kurihara I, Lee DK, Petit FG, Jeong J, Lee K, Lydon JP, et al. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet. 2007;3(6):e102. doi: 10.1371/journal.pgen.0030102.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Williams KC, Renthal NE, Condon JC, Gerard RD, Mendelson CR. MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc Natl Acad Sci U S A. 2012;109(19):7529–34. doi: 10.1073/pnas.1200650109.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A. 2003;100(5):2963–8. doi: 10.1073/pnas.0530162100.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ghosh D, De P, Sengupta J. Luteal phase ovarian oestrogen is not essential for implantation and maintenance of pregnancy from surrogate embryo transfer in the rhesus monkey. Hum Reprod. 1994;9(4):629–37.PubMedGoogle Scholar
  28. 28.
    Smitz J, Bourgain C, Van Waesberghe L, Camus M, Devroey P, Van Steirteghem AC. A prospective randomized study on oestradiol valerate supplementation in addition to intravaginal micronized progesterone in buserelin and HMG induced superovulation. Hum Reprod. 1993;8(1):40–5.PubMedGoogle Scholar
  29. 29.
    Rao AJ, Ramachandra SG, Ramesh V, Krishnamurthy HN, Ravindranath N, Moudgal NR. Establishment of the need for oestrogen during implantation in non-human primates. Reprod Biomed Online. 2007;14(5):563–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340(23):1796–9. doi: 10.1056/NEJM199906103402304.CrossRefPubMedGoogle Scholar
  31. 31.
    Diana M, Schettini M, Gallucci M. Evaluation and management of malfunctionings following implantation of the artificial urinary sphincter. Int Surg. 1999;84(3):241–5.PubMedGoogle Scholar
  32. 32.
    Gregory CW, Wilson EM, Apparao KB, Lininger RA, Meyer WR, Kowalik A, et al. Steroid receptor coactivator expression throughout the menstrual cycle in normal and abnormal endometrium. J Clin Endocrinol Metab. 2002;87(6):2960–6. doi: 10.1210/jcem.87.6.8572.CrossRefPubMedGoogle Scholar
  33. 33.
    Apparao KB, Lovely LP, Gui Y, Lininger RA, Lessey BA. Elevated endometrial androgen receptor expression in women with polycystic ovarian syndrome. Biol Reprod. 2002;66(2):297–304.CrossRefPubMedGoogle Scholar
  34. 34.
    Khorram O, Lessey BA. Alterations in expression of endometrial endothelial nitric oxide synthase and alpha(v)beta(3) integrin in women with endometriosis. Fertil Steril. 2002;78(4):860–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Mukherjee A, Amato P, Allred DC, DeMayo FJ, Lydon JP. Steroid receptor coactivator 2 is required for female fertility and mammary morphogenesis: insights from the mouse, relevance to the human. Nucl Recept Signal. 2007;5:e011. doi: 10.1621/nrs.05011.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer. 2009;9(9):615–30. doi: 10.1038/nrc2695.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mukherjee A, Soyal SM, Fernandez-Valdivia R, Gehin M, Chambon P, Demayo FJ, et al. Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol Cell Biol. 2006;26(17):6571–83. doi: 10.1128/MCB.00654-06.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mahajan MA, Samuels HH. A new family of nuclear receptor coregulators that integrate nuclear receptor signaling through CREB-binding protein. Mol Cell Biol. 2000;20(14):5048–63.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, et al. A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo. J Biol Chem. 1999;274(48):34283–93.CrossRefPubMedGoogle Scholar
  40. 40.
    Ko L, Cardona GR, Chin WW. Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc Natl Acad Sci U S A. 2000;97(11):6212–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Caira F, Antonson P, Pelto-Huikko M, Treuter E, Gustafsson JA. Cloning and characterization of RAP250, a novel nuclear receptor coactivator. J Biol Chem. 2000;275(8):5308–17.CrossRefPubMedGoogle Scholar
  42. 42.
    Kawagoe J, Li Q, Mussi P, Liao L, Lydon JP, DeMayo FJ, et al. Nuclear receptor coactivator-6 attenuates uterine estrogen sensitivity to permit embryo implantation. Dev Cell. 2012;23(4):858–65. doi: 10.1016/j.devcel.2012.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cheng JG, Chen JR, Hernandez L, Alvord WG, Stewart CL. Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc Natl Acad Sci U S A. 2001;98(15):8680–5. doi: 10.1073/pnas.151180898.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sun X, Bartos A, Whitsett JA, Dey SK. Uterine deletion of Gp130 or Stat3 shows implantation failure with increased estrogenic responses. Mol Endocrinol. 2013;27(9):1492–501. doi: 10.1210/me.2013-1086.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–9. doi: 10.1038/359076a0.CrossRefPubMedGoogle Scholar
  46. 46.
    Lim HJ, Dey SK. HB-EGF: a unique mediator of embryo-uterine interactions during implantation. Exp Cell Res. 2009;315(4):619–26. doi: 10.1016/j.yexcr.2008.07.025.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cheng JG, Rodriguez CI, Stewart CL. Control of uterine receptivity and embryo implantation by steroid hormone regulation of LIF production and LIF receptor activity: towards a molecular understanding of “the window of implantation”. Rev Endocr Metab Disord. 2002;3(2):119–26.CrossRefPubMedGoogle Scholar
  48. 48.
    Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology. 2000;141(12):4365–72.PubMedGoogle Scholar
  49. 49.
    Sherwin JR, Freeman TC, Stephens RJ, Kimber S, Smith AG, Chambers I, et al. Identification of genes regulated by leukemia-inhibitory factor in the mouse uterus at the time of implantation. Mol Endocrinol. 2004;18(9):2185–95. doi: 10.1210/me.2004-0110.CrossRefPubMedGoogle Scholar
  50. 50.
    Song H, Lim H, Das SK, Paria BC, Dey SK. Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol Endocrinol. 2000;14(8):1147–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A. 1991;88(24):11408–12.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hirota Y, Daikoku T, Tranguch S, Xie H, Bradshaw HB, Dey SK. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest. 2010;120(3):803–15. doi: 10.1172/JCI40051.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460(7251):118–22. doi: 10.1038/nature08113.CrossRefPubMedGoogle Scholar
  54. 54.
    Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development. 1994;120(5):1071–83.PubMedGoogle Scholar
  55. 55.
    Das SK, Tsukamura H, Paria BC, Andrews GK, Dey SK. Differential expression of epidermal growth factor receptor (EGF-R) gene and regulation of EGF-R bioactivity by progesterone and estrogen in the adult mouse uterus. Endocrinology. 1994;134(2):971–81.PubMedGoogle Scholar
  56. 56.
    Paria BC, Elenius K, Klagsbrun M, Dey SK. Heparin-binding EGF-like growth factor interacts with mouse blastocysts independently of ErbB1: a possible role for heparan sulfate proteoglycans and ErbB4 in blastocyst implantation. Development. 1999;126(9):1997–2005.PubMedGoogle Scholar
  57. 57.
    Raab G, Kover K, Paria BC, Dey SK, Ezzell RM, Klagsbrun M. Mouse preimplantation blastocysts adhere to cells expressing the transmembrane form of heparin-binding EGF-like growth factor. Development. 1996;122(2):637–45.PubMedGoogle Scholar
  58. 58.
    Xie H, Wang H, Tranguch S, Iwamoto R, Mekada E, Demayo FJ, et al. Maternal heparin-binding-EGF deficiency limits pregnancy success in mice. Proc Natl Acad Sci U S A. 2007;104(46):18315–20. doi: 10.1073/pnas.0707909104.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Paria BC, Das SK, Andrews GK, Dey SK. Expression of the epidermal growth factor receptor gene is regulated in mouse blastocysts during delayed implantation. Proc Natl Acad Sci U S A. 1993;90(1):55–9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yoo HJ, Barlow DH, Mardon HJ. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev Genet. 1997;21(1):102–8. doi: 10.1002/(SICI)1520-6408(1997)21:1<102::AID-DVG12>3.0.CO;2-C.CrossRefPubMedGoogle Scholar
  61. 61.
    Leach RE, Khalifa R, Ramirez ND, Das SK, Wang J, Dey SK, et al. Multiple roles for heparin-binding epidermal growth factor-like growth factor are suggested by its cell-specific expression during the human endometrial cycle and early placentation. J Clin Endocrinol Metab. 1999;84(9):3355–63.PubMedGoogle Scholar
  62. 62.
    Chobotova K, Spyropoulou I, Carver J, Manek S, Heath JK, Gullick WJ, et al. Heparin-binding epidermal growth factor and its receptor ErbB4 mediate implantation of the human blastocyst. Mech Dev. 2002;119(2):137–44.CrossRefPubMedGoogle Scholar
  63. 63.
    van Loendersloot L, Repping S, Bossuyt PM, van der Veen F, van Wely M. Prediction models in in vitro fertilization; where are we? A mini review. J Adv Res. 2014;5(3):295–301. doi: 10.1016/j.jare.2013.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Polanski LT, Baumgarten MN, Quenby S, Brosens J, Campbell BK, Raine-Fenning NJ. What exactly do we mean by ‘recurrent implantation failure’? A systematic review and opinion. Reprod Biomed Online. 2014;28(4):409–23. doi: 10.1016/j.rbmo.2013.12.006.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Obstetrics & Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan

Personalised recommendations