Inherited Metabolic Disorders of the Liver



Inherited metabolic disorders (IMD) include more than 70 monogenetic disorders that are mostly associated with enzyme deficiencies. Although IMDs are rarely diagnosed, their combined incidence among full-term neonates has been estimated to account for 20 % of illnesses. One of the most common IMDs originating in the liver and necessitating transplantation is α1-antitrypsin deficiency. Although several in vitro and in vivo models have been used to study this disease, the application of patient-specific hIPSCs and their differentiation to hepatic lineages has allowed not only physiologically relevant insights into the disease mechanisms but also provides the opportunity to understand patient-patient variabilities in phenotypes and sets the stage for the identification of novel biomarkers and the design of drugs that target them. This chapter discusses the wide application range of hIPSCs and addresses how this cellular system can meet previous shortcomings in advancing research into the molecular mechanisms of disease.


Liver disease Cirrhosis hIPSC-derived hepatocytes Alpha-1-antitrypsin deficiency 


  1. American Thoracic Society and European Respiratory (2003) American Thoracic Society Documents American Thoracic Society/European Respiratory Society Statement: standards for the diagnosis and management of individuals with. Am J Respir Clin Care Med 168:818–900. doi: 10.1164/rccm.168.7.818 CrossRefGoogle Scholar
  2. Barbour KW, Wei F, Brannan C, Flotte TR, Baumann H, Berger FG (2002) The murine alpha-1-proteinase inhibitor gene family: polymorphism, chromosomal location, and structure. Genomics 80(5):515–522. doi: 10.1006/geno.2002.6864 CrossRefPubMedGoogle Scholar
  3. Bhatia SN, Underhill GH, Zaret KS, Fox IJ (2014) Cell and tissue engineering for liver disease. Sci Transl Med 6(245):1–21Google Scholar
  4. Bhogal RH, Hodson J, Bartlett DC, Weston CJ, Curbishley SM, Haughton E, Williams KT et al (2011) Isolation of primary human hepatocytes from normal and diseased liver tissue: a one hundred liver experience. PLoS One 6(3):1–8. doi: 10.1371/journal.pone.0018222 CrossRefGoogle Scholar
  5. Borriello F, Krauter KS (1991) Multiple murine alpha-1-protease inhibitor genes show unusual evolutionary divergence. Proc Natl Acad Sci 88:9417–9421CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brantly M, Nukiwa T, Crystal RG (1988) Molecular basis of alpha-1-antitrypsin deficiency. Am J Med 84(6A):13–31CrossRefPubMedGoogle Scholar
  7. Cabezn T, Wilde MDE, Heriont P, Loriaut R, Bollent A (1984) Expression of human a1-antitrypsin cDNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 81:6594–6598CrossRefGoogle Scholar
  8. Cameron PH, Chevet E, Thomas DY, John JM, Cameron PH, Chevet E, Pluquet O et al (2009) Calnexin phosphorylation attenuates the release of partially misfolded alpha-1-antitrypsin to the secretory pathway. J Biol Chem 284:34570–34579. doi: 10.1074/jbc.M109.053165 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carlson JA, Rogers BB, Sifers RN, Hawkins HK, Finegold MJ, Woo SL (1988) Multiple tissues express alpha 1-antitrypsin in transgenic mice and man. J Clin Invest 82(1):26–36CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carlson JA, Rogers BB, Sifers RN, Finegold MJ, Clift SM, DeMayo FJ, Bullock DW et al (1989) Accumulation of iZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 83(4):1183–1190CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cayo MA, Cai J, Delaforest A, Noto FK, Nagaoka M, Clark BS, Collery RF et al (2012) JD induced pluripotent stem cell–derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology 56(6):2163–2171. doi: 10.1002/hep.25871 CrossRefPubMedPubMedCentralGoogle Scholar
  12. DeMeo DL, Silverman EK (2004) Alpha-1-antitrypsin deficiency. 2: genetic aspects of alpha-1-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax 59:259–264. doi: 10.1136/thx.2003.006502 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dycaico MJ, Grant SGN, Felts K, Nichols WS, Geller SA, Hager JH, Pollard AMYJ et al (1988) Neonatal hepatitis induced by alpha-1-antitrypsin: a transgenic mouse model. Science 242:1409–1412CrossRefPubMedGoogle Scholar
  14. Eriksson S (1996) A 30-year perspective on alpha-1-antitrypsin deficiency. Chest 110(6):237–242CrossRefGoogle Scholar
  15. Eriksson S, Carlson J, Velez R (1986) Risk of cirrhosis and primary liver cancer in alpha-1-antitrypsin deficiency. N Engl J Med 314:736–739CrossRefPubMedGoogle Scholar
  16. Fairbanks KD, Tavill AS (2008) Liver disease in alpha 1-antitrypsin deficiency: a review. Am J Gastroenterol 103(8):2136–2141. doi: 10.1111/j.1572-0241.2008.01955.x; quiz 2142CrossRefPubMedGoogle Scholar
  17. Fregonese L, Stolk J (2008) Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis 3(16):1–9. doi: 10.1186/1750-1172-3-16 Google Scholar
  18. Garrod AE (1923) Inborn errors of metabolism, vol 2. Henry Frowde and Hodder & Stoughton, LondonGoogle Scholar
  19. Gartner JC Jr, Zitelli BJ, Malatack JJ, Shaw BW, Iwatsuki S, Starzl TE (1984) Orthotopic liver transplantation in children: two-year experience with 47 patients. Pediatrics 74(1):140–145PubMedPubMedCentralGoogle Scholar
  20. Gooptu B, Lomas DA (2008) Polymers and inflammation: disease mechanisms of the serpinopathies. J Exp Med 205(7):1529–1534. doi: 10.1084/jem.20072080 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, Kovatch KJ, Paul A, et al (2010) Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin a1-antitrypsin Z. PLoS One 5(11):e15460. doi: 10.1371/journal.pone.0015460
  22. Graham K, Le A, Sifers R (1990) Accumulation of the insoluble PiZ variant of human alpha 1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J Biol Chem 265:20463–20468PubMedGoogle Scholar
  23. Gramignoli R, Tahan V, Dorko K, Skvorak KJ, Hansel MC, Zhao W, Venkataramanan R et al (2013) New potential cell source for hepatocyte transplantation: discarded livers from metabolic disease liver transplants. Stem Cell Res 11(1):563–573. doi: 10.1016/j.scr.2013.03.002.New CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hengstler J, Brulport M, Schormann W, Bauer A, Hermes M, Nussler A, Fandrich F et al (2005) Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin Drug Metab Toxicol 1(1):61–74CrossRefPubMedGoogle Scholar
  25. Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH, Hidvegi T, Schmidt BZ, Hale P et al (2005) Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NF-KB, and BAP31 but not the unfolded protein response. J Biol Chem 280:39002–39015. doi: 10.1074/jbc.M508652200 CrossRefPubMedGoogle Scholar
  26. Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N et al (2010) An autophagy-enhancing drug promotes degradation of mutant alpha-1-antitrypsin Z and reduces hepatic fibrosis. Science 329:229–232. doi: 10.1126/science.1190354 CrossRefPubMedGoogle Scholar
  27. Hinds R, Hadchouel A, Shanmugham NP, Al-Hussaini A, Chambers S, Cheeseman P, Mieli-Vergani G et al (2006) Variable degree of liver involvement in siblings with PiZZ alpha-1-antitrypsin deficiency-related liver disease. J Pediatr Gastroenterol Nutr 43:136–138CrossRefPubMedGoogle Scholar
  28. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J et al (2009) Article direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Stem Cell 14(3):370–384. doi: 10.1016/j.stem.2014.01.003. Elsevier IncGoogle Scholar
  29. Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926CrossRefPubMedGoogle Scholar
  30. Janoff A (1985) Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis 132(2):417–433PubMedGoogle Scholar
  31. Janoff A, Scherer J (1968) Mediators of inflammation in leukocyte lysosomes – IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J Exp Med 128(5):1137–1155CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jenne DE (1994) Structure of the azurocidin, proteinase 3, and neutrophil elastase genes – implications for inflammation and vasculitis. Am J Respir Crit Care Med 150:S147–S154CrossRefPubMedGoogle Scholar
  33. Jeppsson JO (1976) Amino acid substitution Glu leads to Lys alpha1-antitrypsin PiZ. FEBS Lett 65(2):195–197CrossRefPubMedGoogle Scholar
  34. Kaushal S, Annamali M, Blomenkamp K, Rudnick D, Halloran D, Brunt E, Teckman J (2010) Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med 235(6):700–709. doi: 10.1258/ebm.2010.009297.Rapamycin CrossRefGoogle Scholar
  35. Kmieć Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161(III–XIII):1–151Google Scholar
  36. Kruse KB, Brodsky JL, McCracken AA (2006) Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 17:203–212. doi: 10.1091/mbc.E04 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Larsson C (1978) Natural history and life expectancy in severe alpha-1-antitrypsin deficiency, PiZ. Acta Med Scand 204(5):345–351PubMedGoogle Scholar
  38. Laurell CB, Eriksson S (1963) The electrophoretic α 1 -globulin pattern of serum in α 1 -antitrypsin deficiency. Scand J Clin Lab Invest 15(2):132–140. doi: 10.3109/15412555.2013.771956 CrossRefGoogle Scholar
  39. Lomas DA, Li-Evans D, Finch JT, Carrell RW (1992) The mechanisms of Z alpha-1-antitrypsin accumulation in the liver. Nature 357:605–607CrossRefPubMedGoogle Scholar
  40. Luisetti M, Seersholm N (2004) Alpha-1-antitrypsin deficiency – 1: epidemiology of alpha-1-antitrypsin deficiency. Thorax 59:164–169CrossRefPubMedPubMedCentralGoogle Scholar
  41. Martins A (1999) Inborn errors of metabolism: a clinical overview. Sao Paulo Med J 117(6):251–265PubMedGoogle Scholar
  42. Martorana PA, Brand T, Gardi C, van Even P, de Santi MM, Calzoni P, Marcolongo P, Lungarella G (1993) The pallid mouse. A model of genetic alpha 1-antitrypsin deficiency. Lab Invest 68(2):233–241. Lab InvestPubMedGoogle Scholar
  43. McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132(3):291–298CrossRefPubMedGoogle Scholar
  44. Morrison HM, Afford SC, Stockley RA (1984) Inhibitory capacity of alpha-1-antitrypsin in lung secretions: variability and the effect of drugs. Thorax 39:510–516CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ordóñez A, Snapp EL, Tan L, Miranda E, Marciniak SJ, Lomas DA (2013) Endoplasmic reticulum polymers impair luminal protein mobility and sensitise to cellular stress in α1-antitrypsin deficiency. Hepatology 57(5):2049–2060. doi: 10.1002/hep.26173.Endoplasmic
  46. Owen MC, Carrell RW (1976) Alpha-1-antitrypsin: molecular abnormality of S variant. Br Med J 1:130–131CrossRefGoogle Scholar
  47. Perlmutter DH (2011) Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease–associated protein aggregates. Annu Rev Med 62:333–345. doi: 10.1146/annurev-med-042409-151920 CrossRefPubMedGoogle Scholar
  48. Perlmutter DH, Cole FS, Kilbridge P, Rossing T (1985) Expression of the alpha-1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci 82:795–799CrossRefPubMedPubMedCentralGoogle Scholar
  49. Qu D, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, α-1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271:22791–22795. doi: 10.1074/jbc.271.37.22791 CrossRefPubMedGoogle Scholar
  50. Rashid ST, Vallier L (2010) Induced pluripotent stem cells – alchemist's tale or clinical reality? Expert Rev Mol Med 12:25CrossRefPubMedGoogle Scholar
  51. Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-doran I et al (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120(9):3127–3136. doi: 10.1172/JCI43122DS1 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sampaziotis F, Segeritz C-P, Vallier L (2015) Potential of human induced pluripotent stem cells in studies of liver disease. Hepatology 62(1):303–11CrossRefPubMedGoogle Scholar
  53. Sandborg RR, Smolen JE (1988) Biology of disease: early biochemical events in leukocyte activation. Lab Invest 59:300–320PubMedGoogle Scholar
  54. Schwartz RE, Fleming HE, Khetani SR, Bhatia SN (2014) Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv 32(2):504–513. doi: 10.1016/j.biotechadv.2014.01.003. Elsevier B.VCrossRefPubMedPubMedCentralGoogle Scholar
  55. Scott CM, Kruse KB, Schmidt Z, Perlmutter DH, Mccracken AA, Brodsky JL (2007) ADD66, a, gene involved in the endoplasmic reticulum-associated degradation of alpha-1-antitrypsin-Z in yeast, facilitates proteasome activity and assembly. Mol Biol Cell 18:3776–3787. doi: 10.1091/mbc.E07 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Seersholm N, Kok-jensen A, Dirksen A (1994) Survival of patients with severe alpha-1-antitrypsin deficiency with special reference to non-index cases. Thorax 49:695–698CrossRefPubMedPubMedCentralGoogle Scholar
  57. Serres F (2002) Worldwide racial and ethnic distribution of alpha-1-antitrypsin deficiency. Chest 122:1818–1829CrossRefPubMedGoogle Scholar
  58. Seymour C, Thomason M, Chalmers R, Addison G, Bain M, Cockburn F, Littlejohns P et al (1997) Newborn screening for inborn errors of metabolism: a systematic review. Health Technol Assess 1(11):1–95Google Scholar
  59. Shapiro SD (2007) Transgenic and gene-targeted mice as models for chronic obstructive pulmonary disease. Eur Respir J 29(2):375–8CrossRefPubMedGoogle Scholar
  60. Sifers RN, Carlson JA, Clift SM, DeMayo FJ, Bullock DW, Woo SL (1987) Tissue specific expression of the human alpha-1-antitrypsin gene in transgenic mice. Nucleic Acids Res 15(4):1459–75CrossRefPubMedPubMedCentralGoogle Scholar
  61. Si-Tayeb K, Lemaigre P, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18:175–189. doi: 10.1016/j.devcel.2010.01.011 CrossRefPubMedGoogle Scholar
  62. Stoller JK, Tomashefski J, Crystal RG, Arroliga A, Strange C, Killian DK, Schluchter MD et al (2005) Mortality in individuals with severe deficiency of alpha-1-antitrypsin. Chest 127:1196–1204PubMedGoogle Scholar
  63. Sveger T (1976) Liver disease in alpha-1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 294:1316–1321CrossRefPubMedGoogle Scholar
  64. Sveger T (1988) The natural history of liver disease in alpha 1-antitrypsin deficient children. Acta Paediatr Scand 77(6):847–851CrossRefPubMedGoogle Scholar
  65. Tafaleng EN, Chakraborty S, Han B, Hale P, Wu W, Soto-gutierrez A, Feghali-bostwick CA et al (2015) Induced pluripotent stem cells model personalized variations in liver disease resulting from a1-antitrypsin deficiency. Hepatology 00(00):1–11. doi: 10.1002/hep.27753 Google Scholar
  66. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  67. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi: 10.1016/j.cell.2007.11.019 CrossRefPubMedGoogle Scholar
  68. Takayama K, Kawabata K, Nagamoto Y, Kishimoto K, Tashiro K, Mizuguchi H (2013) 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 34:1781–1789. doi: 10.1016/j.biomaterials.2012.11.029. Elsevier LtdCrossRefPubMedGoogle Scholar
  69. Tobin M, Cook P, Hutchison D (1983) Alpha 1 antitrypsin deficiency: the clinical and physiological features of pulmonary emphysema in subjects homozygous for Pi type Z. A survey by the British Thoracic Association. Br J Dis Chest 77(1):14–27CrossRefPubMedGoogle Scholar
  70. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S et al (2010) Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51(5):1754–65CrossRefPubMedGoogle Scholar
  71. Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Ann Rev Biochem 52:655–709CrossRefPubMedGoogle Scholar
  72. Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci 93:13797–13801CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324. doi: 10.1038/nature05944 CrossRefPubMedGoogle Scholar
  74. Wilson AA, Ying L, Liesa M, Segeritz C-P, Mills JA, Shen SS, Jean J et al (2015) Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Rep 4:873–885. doi: 10.1016/j.stemcr.2015.02.021 CrossRefGoogle Scholar
  75. Wu Y, Whitman INA, Molmenti E, Moore K, Hippenmeyert P, Perlmutter DH (1994) A lag in intracellular degradation of mutant alpha-1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha-1-antitrypsin deficiency. Proc Natl Acad Sci 91:9014–9018CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6(3):1–10. doi: 10.1371/journal.pone.0017557 CrossRefGoogle Scholar
  77. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu P-Q, Paschon DE, Miranda E et al (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478(7369):391–394. doi: 10.1038/nature10424 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, Department of SurgeryUniversity of CambridgeCambridgeUK

Personalised recommendations