Skip to main content

Testicular Tissue Cryopreservation

  • Chapter
  • First Online:
Gonadal Tissue Cryopreservation in Fertility Preservation

Abstract

Loss of spermatogonial stem cells can be associated to ageing or can be part of genetic disorders such as 47,XXY Klinefelter syndrome. However, cytotoxic therapies and/or irradiation is the main cause of germ cell loss and can disrupt spermatogenesis temporarily or permanently. These therapies are not only used to treat malignant disorders but may also be used for benign haematological conditions that need bone-marrow transplantation.

Since survival rates after cancer treatment are increasing, preservation of the reproductive potential has become an important quality of life issue for both adults but also for childhood cancer survivors. Adult men who cannot bank ejaculate spermatozoa can opt to cryopreserve surgically retrieved spermatozoa, i.e. testicular sperm. Prepubertal boys cannot benefit from sperm banking, but testicular stem cell banking is being introduced into more and more clinics. This strategy should still be regarded as experimental given the lack of any report on successful transplantation and the limited safety data of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng X, Lindahl M, Hyvönen ME et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    Article  CAS  PubMed  Google Scholar 

  2. Song HW, Wilkinson MF (2014) Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 30:14–26

    Article  PubMed  Google Scholar 

  3. Buaas FW, Kirsh AL, Sharma M et al (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36:647–652

    Article  CAS  PubMed  Google Scholar 

  4. Costoya JA, Hobbs RM, Barna M et al (2004) Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36:653–659

    Article  CAS  PubMed  Google Scholar 

  5. Krausz C, Forti G (2006) Sperm cryopreservation in male infertility due to genetic disorders. Cell Tissue Bank 7:105–112

    Article  PubMed  Google Scholar 

  6. Dakouane M, Albert M, Bergère M et al (2005) Aging and spermatogenesis: an histologic, cytogenetic and apoptosis study. Gynecol Obstet Fertil 33:659–664

    Article  CAS  PubMed  Google Scholar 

  7. Meistrich ML (2013) Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril 100:1180–1186

    Article  CAS  PubMed  Google Scholar 

  8. Tournaye H, Dohle GR, Barratt CL (2014) Fertility preservation in men with cancer. Lancet 384:1295–1301

    Article  PubMed  Google Scholar 

  9. Nangia AK, Krieg SA, Kim SS (2013) Clinical guidelines for sperm cryopreservation in cancer patients. Fertil Steril 100:1203–1209

    Article  PubMed  Google Scholar 

  10. Lass A, Akagbosu F, Abusheikha N et al (1998) A programme of semen cryopreservation for patients with malignant disease in a tertiary infertility centre: lessons from 8 years’ experience. Hum Reprod 13:3256–3261

    Article  CAS  PubMed  Google Scholar 

  11. Baniel J, Sella A (2001) Sperm extraction at orchiectomy for testis cancer. Fertil Steril 75:260–262

    Article  CAS  PubMed  Google Scholar 

  12. Rosenlund B, Sjöblom P, Törnblom M et al (1998) In-vitro fertilization and intracytoplasmic sperm injection in the treatment of infertility after testicular cancer. Hum Reprod 13:414–418

    Article  CAS  PubMed  Google Scholar 

  13. Haddad N, Al-Rabeeah K, Onerheim R, Zini A (2014) Is ex vivo microdissection testicular sperm extraction indicated for infertile men undergoing radical orchiectomy for testicular cancer? Case report and literature review. Fertil Steril 101:956–959

    Article  PubMed  Google Scholar 

  14. Schrader M, Müller M, Sofikitis N et al (2003) Onco-tese: testicular sperm extraction in azoospermic cancer patients before chemotherapy-new guidelines? Urology 61:421–425

    Article  CAS  PubMed  Google Scholar 

  15. Berookhim BM, Mulhall JP (2014) Outcomes of operative sperm retrieval strategies for fertility preservation among males scheduled to undergo cancer treatment. Fertil Steril 101:801–811

    Article  Google Scholar 

  16. Avarbock MR, Brinster CJ, Brinster RL (1996) Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med 2:693–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCook A (2013) A future, on ice. Nat Med 19:958–961

    Article  CAS  PubMed  Google Scholar 

  18. Brinster RL, Zimmerman JW (1994) Spermatogenesis following germ cell transplantation. Proc Natl Acad Sci U S A 91:11298–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shinohara T, Inoue K, Ogonuki N et al (2002) Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. Hum Reprod 17:3039–3045

    Article  CAS  PubMed  Google Scholar 

  20. Hermann BP, Sukhwani M, Winkler F et al (2012) Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 11:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keros V, Hultenby K, Borgström B et al (2007) Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod 22:1384–1395

    Article  CAS  PubMed  Google Scholar 

  22. Curaba M, Poels J, van Langendonckt A et al (2011) Can prepubertal human testicular tissue be cryopreserved by vitrification? Fertil Steril 95:2123.e9–2123.e12

    Google Scholar 

  23. Baert Y, Van Saen D, Haentjens P et al (2013) What is the best cryopreservation protocol for human testicular tissue banking? Hum Reprod 28:1816–1826

    Article  CAS  PubMed  Google Scholar 

  24. Kanatsu-Shinohara M, Ogonuki N, Iwano T et al (2005) Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132:4155–4163

    Article  CAS  PubMed  Google Scholar 

  25. Sadri-Ardekani H, Mizrak SC, van Daalen SK et al (2009) Propagation of human spermatogonial stem cells in vitro. JAMA 302:2127–2134

    Article  CAS  PubMed  Google Scholar 

  26. Sadri-Ardekani H, Akhondi MA, van der Veen F et al (2011) In vitro propagation of human prepubertal spermatogonial stem cells. JAMA 305:2416–2418

    Article  CAS  PubMed  Google Scholar 

  27. Nickkholgh B, Mizrak SC, van Daalen SK et al (2014) Genetic and epigenetic stability of human spermatogonial stem cells during long-term culture. Fertil Steril 102:1700–1707

    Article  PubMed  Google Scholar 

  28. Eildermann K, Gromoll J, Behr R (2012) Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture. Hum Reprod 27:1754–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kossack N, Terwort N, Wistuba J, Ehmcke J, Schlatt S, Schöler H, Kliesch S, Gromoll J (2013) A combined approach facilitates the reliable detection of human spermatogonia in vitro. Hum Reprod 28:3012–3025

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Y, Thomas A, Schmidt CM, Dann CT (2014) Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Hum Reprod 29:2497–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baert Y, Braye A, Struijk RB, van Pelt AMM, Goossens E (2015) Comparable testicular cell dynamics in long-term cultures derived from either fresh or cryopreserved tissues. Fertil Steril 104(5):1244–1252

    Google Scholar 

  32. Goossens E, De Rycke M, Haentjens P, Tournaye H (2009) DNA methylation patterns of spermatozoa and two generations of offspring obtained after murine spermatogonial stem cell transplantation. Hum Reprod 24:2255–2263

    Article  CAS  PubMed  Google Scholar 

  33. Goossens E, Bilgec T, Van Saen D, Tournaye H (2011) Mouse germ cells go through typical epigenetic modifications after intratesticular tissue grafting. Hum Reprod 26:3388–3400

    Article  CAS  PubMed  Google Scholar 

  34. de Vos Goossens E, Tournaye H (2010) Array comparative genomic hybridization analysis does not show genetic alterations in spermatozoa and offspring generated after spermatogonial stem cell transplantation in the mouse. Hum Reprod 25:1836–1842

    Article  CAS  PubMed  Google Scholar 

  35. Jahnukainen K, Hou M, Petersen C et al (2001) Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Res 61:706–710

    CAS  PubMed  Google Scholar 

  36. Dovey SL, Valli H, Hermann BP et al (2013) Eliminating malignant contamination from therapeutic human spermatogonial stem cells. J Clin Invest 123:1833–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sadri-Ardekani H, Homburg CH, van Capel TM et al (2014) Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: a pilot study. Fertil Steril 101:1072–1078

    Article  PubMed  Google Scholar 

  38. van den Berg H, Repping S, van der Veen F (2007) Parental desire and acceptability of spermatogonial stem cell cryopreservation in boys with cancer. Hum Reprod 22:594–597

    Article  PubMed  Google Scholar 

  39. Sadri-Ardekani H, Akhondi MM, Vossough P et al (2013) Parental attitudes towards fertility preservation in boys with cancer: context of different risk levels of infertility and success rates of fertility restoration. Fertil Steril 99:796–802

    Article  PubMed  Google Scholar 

  40. Wyns C, Curaba M, Petit S et al (2011) Management of fertility preservation in prepubertal patients: 5 years’ experience at the Catholic University of Louvain. Hum Reprod 26:737–747

    Article  CAS  PubMed  Google Scholar 

  41. Ginsberg JP, Li Y, Carlson CA (2014) Testicular tissue cryopreservation in prepubertal male children: an analysis of parental decision-making. Pediatr Blood Cancer 61:1673–1678

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman Tournaye .

Editor information

Editors and Affiliations

Appendix

Appendix

9.1.1 Protocol for Cryopreservation of Human Testicular Tissue (Containing Spermatozoa) in View of Fertility Preservation

Cryopreservation Medium

ready for use sperm freezing medium based on glycerol, commercially available from different companies.

Collection Medium for Testicular Tissue

Hepes-buffered HTF or sperm buffer supplemented with HSA, commercially available from different companies.

Preparation and Freezing of Testicular Tissue

  1. 1.

    Place the excised biopsies in a sterile petridish or tube filled with 5 ml of Hepes-buffered collection medium at room temperature and transport it to the laboratory

  2. 2.

    Unravel and mince the biopsies with the help of sterile pincettes, scissors or bended needles under the stereomicroscope in a laminar flow

  3. 3.

    Control the presence of spermatozoa in the suspension under the inverted microscope at 200× or 400× magnification

  4. 4.

    Put the suspension in a 10 ml Facon tube and centrifuge at 750 × g for 5 min

  5. 5.

    Discard the supernatant and resuspend the pellet in a volume which depends on the volume of the tissue

  6. 6.

    Add cryopreservation medium which was brought at room temperature dropwise, the volume to add depends on the volume of the final suspension and on the volume: volume ratio according to the manufacturer’s instructions.

  7. 7.

    Aspirate the mixture in high-security straws, which are heat sealed.

  8. 8.

    Freezing is carried out in a programmable freezer with a programme for ejaculated sperm.

  9. 9.

    At the end of the programme, plunge the straws into LN2 and transport to and store in the LN2 container (vapour phase or liquid phase).

9.1.2 Protocol for Cryopreservation of Prepubertal Human Testicular Tissue (Spermatogonial Stem Cells) in View of Fertility Preservation

Components of the medium

Company and product N°

Storage

Hepes-buffered DMEM/F12

Gibco 31330-095

4 °C

HSA (human serum albumin)

Vitrolife 10064

4 °C

Sucrose

Sigma S1888-500G

RT

DMSO

WAK Chemie WAK-DMSO-10

RT

Fresh Preparation of the Cryopreservation Medium

  • 2.55 g sucrose (0.15 M) + 40 ml DMEM/F12

  • → in a sterile container, wait until sucrose dissolves, filter it

  • +5 ml HAS 10 %)

  • +5 ml sterile DMSO (1.5 M)

  • Keep on melting ice (4 °C) prior to use

Preliminary Preparation of the Cryopreservation Medium

  • 2.55 g sucrose (0.15 M) + 40 ml DMEM/F12

  • → in a sterile sperm container, wait until sucrose dissolves, filter it

  • → aliquot 8 ml in Falcon tubes

  • → store at −20 °C

Day of Use

  • Thaw one Falcon tube sucrose solution

  • +1 ml HSA (10 %) per Falcon tube

  • +1 ml sterile DMSO (1.5 M)

  • Keep on melting ice (4 °C) prior to use

Washing Medium

  • Hepes-buffered DMEM at 4 °C

Preparation and Freezing of Testicular Tissue

  1. 1.

    Clean the laminar flow, work as aseptic as possible.

  2. 2.

    The tissue is collected and transported in a sterile container with 0.9 % NaCl on ice. Take the tissue out of the collecting container.

    Transfer the tissue to a large sterile petridish containing DMEM. Work on ice water or use a cooling element.

    Rinse the tissue well.

  3. 3.

    Transfer the tissue to a second petridish containing DMEM on ice water/cooling element.

  4. 4.

    Cut the tissue in fragments of 6 mm3 using a sterile scissor and pincet.

    Remove the tunica, if present.

  5. 5.

    Rinse the fragments in a third petridish containing DMEM on ice water/cooling element.

  6. 6.

    Reserve one of the fragments for histological analysis.

    Transfer this fragment to a vial with 1.5 ml DMEM. Keep on ice.

  7. 7.

    Put the cryo vials in a cooling rack or on ice (absolutely avoid getting water or ice inside the vial!), and add 1.5 ml of cryopreservation medium (4 °C)

  8. 8.

    Put the tissue fragments two by two in the cryo vials. Close the vials.

  9. 9.

    Leave the vials on ice water/cooling element for 15 min.

  10. 10.

    Put the vials in a cooled container with propanodial.

    Transfer the propanodial container to a −80 °C freezer. Leave it there overnight.

  11. 11.

    For sterility control: Collect a fraction of the transport medium, of DMEM of the last washing dish (petridish 3) and of the cryopreservation medium, and put it in tubes for sterility testing.

Next day: Transfer the vials from the −80 °C freezer to the LN2 container. Freeze in the vapour phase in case of screw-cap vials.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tournaye, H., Verheyen, G., Goossens, E. (2016). Testicular Tissue Cryopreservation. In: Suzuki, N., Donnez, J. (eds) Gonadal Tissue Cryopreservation in Fertility Preservation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55963-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55963-4_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55961-0

  • Online ISBN: 978-4-431-55963-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics