Advertisement

Ovarian Tissue Cryopreservation: Slow Freezing

  • Sonia Herraiz
  • Cesar Diaz-GarciaEmail author
  • Antonio Pellicer
Chapter
  • 592 Downloads

Abstract

The needs for fertility preservation (FP) have substantially increased due to improvements in early diagnosis and survival of many malignancies experienced during the last decades. Different FP options can be offered nowadays, but ovarian tissue cryopreservation and retransplantation is the preferred option in prepubertal girls or when there is an urgent need to start the treatment (no time for ovarian stimulation). In this chapter, the basic principles of cryopreservation will be reviewed. A comprehensive and clinical practice-oriented description of the retrieval, preparation, and slow-freezing procedure of the tissue will be provided, together with a summary of the cryopreservation protocols that have been proven to be effective by obtaining live births.

Keywords

Cancer Cryopreservation Fertility Ovary 

References

  1. 1.
    Linabery AM, Ross JA (2008) Childhood and adolescent cancer survival in the US by race and ethnicity for the diagnostic period 1975–1999. Cancer 113(9):2575–2596PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gnerlich JL, Deshpande AD, Jeffe DB, Sweet A, White N, Margenthaler JA (2009) Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J Am Coll Surg 208(3):341–347PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Jemal A, Clegg LX, Ward E, Ries LA, Wu X, Jamison PM et al (2004) Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer 101(1):3–27PubMedCrossRefGoogle Scholar
  4. 4.
    Marhhom E, Cohen I (2007) Fertility preservation options for women with malignancies. Obstet Gynecol Surv 62(1):58–72PubMedCrossRefGoogle Scholar
  5. 5.
    Bleyer WA (1990) The impact of childhood cancer on the United States and the world. CA Cancer J Clin 40(6):355–367PubMedCrossRefGoogle Scholar
  6. 6.
    Meirow D, Dor J, Kaufman B, Shrim A, Rabinovici J, Schiff E et al (2007) Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod 22(6):1626–1633PubMedCrossRefGoogle Scholar
  7. 7.
    Kiserud CE, Fossa A, Holte H, Fossa SD (2007) Post-treatment parenthood in Hodgkin’s lymphoma survivors. Br J Cancer 96(9):1442–1449PubMedPubMedCentralGoogle Scholar
  8. 8.
    Familiari G, Caggiati A, Nottola SA, Ermini M, Di Benedetto MR, Motta PM (1993) Ultrastructure of human ovarian primordial follicles after combination chemotherapy for Hodgkin’s disease. Hum Reprod 8(12):2080–2087PubMedGoogle Scholar
  9. 9.
    Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S et al (2013) Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med [Research Support, Non-US Gov’t] 5(185):185ra62Google Scholar
  10. 10.
    Meirow D, Baum M, Yaron R, Levron J, Hardan I, Schiff E et al (2007) Ovarian tissue cryopreservation in hematologic malignancy: ten years’ experience. Leuk Lymphoma 48(8):1569–1576PubMedCrossRefGoogle Scholar
  11. 11.
    Chiarelli AM, Marrett LD, Darlington G (1999) Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964–1988 in Ontario Canada. Am J Epidemiol 150(3):245–254PubMedCrossRefGoogle Scholar
  12. 12.
    Wallace WH, Thomson AB, Kelsey TW (2003) The radiosensitivity of the human oocyte. Hum Reprod 18(1):117–121PubMedCrossRefGoogle Scholar
  13. 13.
    Grigsby PW, Herzog TJ (2001) Current management of patients with invasive cervical carcinoma. Clin Obstet Gynecol 44(3):531–537PubMedCrossRefGoogle Scholar
  14. 14.
    Gill S, Blackstock AW, Goldberg RM (2007) Colorectal cancer. Mayo Clin Proc 82(1):114–129PubMedCrossRefGoogle Scholar
  15. 15.
    Tauchmanova L, Selleri C, Rosa GD, Pagano L, Orio F, Lombardi G et al (2002) High prevalence of endocrine dysfunction in long-term survivors after allogeneic bone marrow transplantation for hematologic diseases. Cancer 95(5):1076–1084PubMedCrossRefGoogle Scholar
  16. 16.
    Linch DC, Gosden RG, Tulandi T, Tan SL, Hancock SL (2000) Hodgkin’s lymphoma: choice of therapy and late complications. Hematol Am Soc Hematol Educ Program 205–221Google Scholar
  17. 17.
    Burdach S, van Kaick B, Laws HJ, Ahrens S, Haase R, Korholz D et al (2000) Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann Oncol 11(11):1451–1462PubMedCrossRefGoogle Scholar
  18. 18.
    Wu HY, Snyder HM 3rd, D’Angio GJ (2005) Wilms’ tumor management. Curr Opin Urol 15(4):273–276PubMedCrossRefGoogle Scholar
  19. 19.
    Spreafico F, Bellani FF (2006) Wilms’ tumor: past, present and (possibly) future. Expert Rev Anticancer Ther 6(2):249–258PubMedCrossRefGoogle Scholar
  20. 20.
    Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y (2009) Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update [Research Support, Non-US Gov’t Review] 15(6):649–665CrossRefGoogle Scholar
  21. 21.
    Practice Committee of American Society for Reproductive M (2013) Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril [Practice Guideline] 100(5):1214–1223CrossRefGoogle Scholar
  22. 22.
    von Wolff M, Thaler CJ, Frambach T, Zeeb C, Lawrenz B, Popovici RM et al. (2009) Ovarian stimulation to cryopreserve fertilized oocytes in cancer patients can be started in the luteal phase. Fertil Steril 92(4):1360–1365Google Scholar
  23. 23.
    Maman E, Meirow D, Brengauz M, Raanani H, Dor J, Hourvitz A (2011) Luteal phase oocyte retrieval and in vitro maturation is an optional procedure for urgent fertility preservation. Fertil Steril 95(1):64–67PubMedCrossRefGoogle Scholar
  24. 24.
    Fadini R, Mignini Renzini M, Dal Canto M, Epis A, Crippa M, Caliari I et al (2013) Oocyte in vitro maturation in normo-ovulatory women. Fertil Steril [Review] 99(5):1162–1169CrossRefGoogle Scholar
  25. 25.
    Shaw JM, Jones GM (2003) Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos. Hum Reprod Update 9(6):583–605PubMedCrossRefGoogle Scholar
  26. 26.
    Kuwayama M (2007) Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 67(1):73–80PubMedCrossRefGoogle Scholar
  27. 27.
    Mazur P (1970) Cryobiology: the freezing of biological systems. Science 168(3934):939–949PubMedCrossRefGoogle Scholar
  28. 28.
    Sun WQ (1999) State and phase transition behaviors of Quercus rubra seed axes and cotyledonary tissues: relevance to the desiccation sensitivity and cryopreservation of recalcitrant seeds. Cryobiology 38(4):372–385PubMedCrossRefGoogle Scholar
  29. 29.
    Liebermann J (2002) Potential importance of vitrification in reproductive medicine. Biol Reprod 67(6):1671–1680PubMedCrossRefGoogle Scholar
  30. 30.
    Muldrew K, McGann LE (1990) Mechanisms of intracellular ice formation. Biophys J 57(3):525–532PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mazur P (1990) Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys 17(1):53–92PubMedCrossRefGoogle Scholar
  32. 32.
    Shaw JM, Oranratnachai A, Trounson AO (2000) Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53(1):59–72PubMedCrossRefGoogle Scholar
  33. 33.
    Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196 and −269 C. Science 178(4059):411–414PubMedCrossRefGoogle Scholar
  34. 34.
    Demeestere I, Simon P, Buxant F, Robin V, Fernandez SA, Centner J et al (2006) Ovarian function and spontaneous pregnancy after combined heterotopic and orthotopic cryopreserved ovarian tissue transplantation in a patient previously treated with bone marrow transplantation: case report. Hum Reprod 21(8):2010–2014PubMedCrossRefGoogle Scholar
  35. 35.
    Shaw JM, Kola I, MacFarlane DR, Trounson AO (1991) An association between chromosomal abnormalities in rapidly frozen 2-cell mouse embryos and the ice-forming properties of the cryoprotective solution. Reproduction 91(1):9–18CrossRefGoogle Scholar
  36. 36.
    Arav A, Natan Y (2009) Directional freezing: a solution to the methodological challenges to preserve large organs. Semin Reprod Med 27(06):438–442PubMedCrossRefGoogle Scholar
  37. 37.
    Wowk B (2010) Thermodynamic aspects of vitrification. Cryobiology 60(1):11–22PubMedCrossRefGoogle Scholar
  38. 38.
    Fahy GM (2010) Cryoprotectant toxicity neutralization. Cryobiology 60(3):S45–S53PubMedCrossRefGoogle Scholar
  39. 39.
    Karlsson JOM, Toner M (1996) Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17(3):243–256PubMedCrossRefGoogle Scholar
  40. 40.
    Acker JP, Elliott JAW, McGann LE (2001) Intercellular ice propagation: experimental evidence for ice growth through membrane pores. Biophys J 81(3):1389–1397PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Beckmann J, Körber C, Rau G, Hubel A, Cravalho EG (1990) Redefining cooling rate in terms of ice front velocity and thermal gradient: first evidence of relevance to freezing injury of lymphocytes. Cryobiology 27(3):279–287PubMedCrossRefGoogle Scholar
  42. 42.
    Hubel A, Cravalho EG, Nunner B, Körber C (1992) Survival of directionally solidified B-lymphoblasts under various crystal growth conditions. Cryobiology 29(2):183–198PubMedCrossRefGoogle Scholar
  43. 43.
    Rall WF, Reid DS, Polge C (1984) Analysis of slow-warming injury of mouse embryos by cryomicroscopical and physiochemical methods. Cryobiology 21(1):106–121PubMedCrossRefGoogle Scholar
  44. 44.
    Gougeon A (1996) Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 17(2):121–155PubMedCrossRefGoogle Scholar
  45. 45.
    Qu J, Godin PA, Nisolle M, Donnez J (2000) Distribution and epidermal growth factor receptor expression of primordial follicles in human ovarian tissue before and after cryopreservation. Hum Reprod 15(2):302–310PubMedCrossRefGoogle Scholar
  46. 46.
    Picton HM, Harris SE, Muruvi W, Chambers EL (2008) The in vitro growth and maturation of follicles. Reproduction 136(6):703–715PubMedCrossRefGoogle Scholar
  47. 47.
    Thomas FH, Walters KA, Telfer EE (2003) How to make a good oocyte: an update on in-vitro models to study follicle regulation. Hum Reprod Update 9(6):541–555PubMedCrossRefGoogle Scholar
  48. 48.
    Zuckerman S (1951) The number of oocytes in the mature ovary. Recent Prog Horm Res 6:63–108Google Scholar
  49. 49.
    Tingen CM, Bristol-Gould SK, Kiesewetter SE, Wellington JT, Shea L, Woodruff TK (2009) Prepubertal primordial follicle loss in mice is not due to classical apoptotic pathways. Biol Reprod 81(1):16–25PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hardy K, Wright CS, Franks S, Winston RM (2000) In vitro maturation of oocytes. Br Med Bull 56(3):588–602PubMedCrossRefGoogle Scholar
  51. 51.
    Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA (2008) A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod 23(3):699–708PubMedCrossRefGoogle Scholar
  52. 52.
    Macklon NS, Fauser BC (1999) Aspects of ovarian follicle development throughout life. Horm Res 52(4):161–170PubMedCrossRefGoogle Scholar
  53. 53.
    Greenwald GS (1972) Of eggs and follicles. Am J Anat 135(1):1–3PubMedCrossRefGoogle Scholar
  54. 54.
    Lass A (2004) Assessment of ovarian reserve: is there still a role for ovarian biopsy in the light of new data? Hum Reprod [Review] 19(3):467–469CrossRefGoogle Scholar
  55. 55.
    Kohl J, Dittrich R, Siebzehnrübl E, Wildt L (2000) Determination of follicle numbers in human ovarian biopsies—a method for estimation of outcome of ovarian cryopreservation? Fertil Steril 74(3):1CrossRefGoogle Scholar
  56. 56.
    Poirot C, Vacher-Lavenu MC, Helardot P, Guibert J, Brugieres L, Jouannet P (2002) Human ovarian tissue cryopreservation: indications and feasibility. Hum Reprod 17(6):1447–1452PubMedCrossRefGoogle Scholar
  57. 57.
    Schmidt KL, Byskov AG, Nyboe Andersen A, Muller J, Yding Andersen C (2003) Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod 18(6):1158–1164PubMedCrossRefGoogle Scholar
  58. 58.
    Kristensen SG, Rasmussen A, Byskov AG, Andersen CY (2011) Isolation of pre-antral follicles from human ovarian medulla tissue. Hum Reprod [Research Support, Non-US Gov’t] 26(1):157–166Google Scholar
  59. 59.
    Kagawa N, Kuwayama M, Nakata K, Vajta G, Silber S, Manabe N et al (2007) Production of the first offspring from oocytes derived from fresh and cryopreserved pre-antral follicles of adult mice. Reprod Biomed Online 14(6):693–699PubMedCrossRefGoogle Scholar
  60. 60.
    Shimizu T, Jiang JY, Iijima K, Miyabayashi K, Ogawa Y, Sasada H et al (2003) Induction of follicular development by direct single injection of vascular endothelial growth factor gene fragments into the ovary of miniature gilts. Biol Reprod 69(4):1388–1393PubMedCrossRefGoogle Scholar
  61. 61.
    Nunez Valera MJ, Padilla Iserte P, Higueras Garcia G, Herraiz S, Rubio JM, Romeu Villarroya M et al (2015) Single site laparoscopy for fertility preservation: a cohort study. J Minim Invasive Gynecol 22(2):291–296PubMedCrossRefGoogle Scholar
  62. 62.
    Rosendahl M, Schmidt KT, Ernst E, Rasmussen PE, Loft A, Byskov AG et al (2011) Cryopreservation of ovarian tissue for a decade in Denmark: a view of the technique. Reprod Biomed Online [Historical Article Research Support, Non-US Gov’t] 22(2):162–171Google Scholar
  63. 63.
    Silber S, Kagawa N, Kuwayama M, Gosden R (2010) Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril 94(6):2191–2196PubMedCrossRefGoogle Scholar
  64. 64.
    Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Sanchez Serrano M, Schmidt KT et al (2013) Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril 99(6):1503–1513PubMedCrossRefGoogle Scholar
  65. 65.
    Jadoul P, Dolmans MM, Donnez J (2010) Fertility preservation in girls during childhood: is it feasible, efficient and safe and to whom should it be proposed? Hum Reprod Update [Research Support, Non-US Gov’t Review] 16(6):617–630CrossRefGoogle Scholar
  66. 66.
    Rosendahl M, Andersen CY, Ernst E, Westergaard LG, Rasmussen PE, Loft A et al (2008) Ovarian function after removal of an entire ovary for cryopreservation of pieces of cortex prior to gonadotoxic treatment: a follow-up study. Hum Reprod 23(11):2475–2483PubMedCrossRefGoogle Scholar
  67. 67.
    Cursio R, Colosetti P (2015) Autophagy and liver ischemia-reperfusion injury. Biomed Res Int 2015:417590Google Scholar
  68. 68.
    Gonzalez LM, Moeser AJ, Blikslager AT (2015) Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research. Am J Physiol Gastrointest Liver Physiol 308(2):G63–G75PubMedCrossRefGoogle Scholar
  69. 69.
    Hilbert T, Klaschik S (2015) The angiopoietin/TIE receptor system: focusing its role for ischemia-reperfusion injury. Cytokine Growth Factor Rev 26(3):281–291PubMedCrossRefGoogle Scholar
  70. 70.
    Ibanez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. BioMed Res Int 65(14):1454–1471Google Scholar
  71. 71.
    Salvadori M, Rosso G, Bertoni E (2015) Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J Trans 5(2):52–67Google Scholar
  72. 72.
    Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Ernst E, Macklon KT et al (2015) Fertility preservation for age-related fertility decline. Lancet [Comment Letter] 385(9967):506–507CrossRefGoogle Scholar
  73. 73.
    Dittrich R, Lotz L, Keck G, Hoffmann I, Mueller A, Beckmann MW et al (2012) Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 97(2):387–390PubMedCrossRefGoogle Scholar
  74. 74.
    Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG (1999) Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at -196 C. Endocrinology 140(1):462–471PubMedGoogle Scholar
  75. 75.
    Gavish Z, Ben-Haim M, Arav A (2008) Cryopreservation of whole murine and porcine livers. Rejuvenation Res 11(4):765–772PubMedCrossRefGoogle Scholar
  76. 76.
    Gavish Z, Peer G, Roness H, Cohen Y, Meirow D (2014) Follicle activation and ‘burn-out’ contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness. Hum Reprod [Research Support, Non-US Gov’t] 29(5):989–996Google Scholar
  77. 77.
    Kagawa N, Silber S, Kuwayama M (2009) Successful vitrification of bovine and human ovarian tissue. Reprod Biomed Online 18(4):568–577PubMedCrossRefGoogle Scholar
  78. 78.
    Gosden RG, Baird DT, Wade JC, Webb R (1994) Restoration of fertility to oophorectomized sheep by ovarian autografts stored at -196 degrees C. Hum Reprod 9(4):597–603PubMedGoogle Scholar
  79. 79.
    Silber SJ, DeRosa M, Pineda J, Lenahan K, Grenia D, Gorman K et al (2008) A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod 23(7):1531–1537PubMedCrossRefGoogle Scholar
  80. 80.
    Arav A, Zeron Y, Leslie SB, Behboodi E, Anderson GB, Crowe JH (1996) Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33(6):589–599PubMedCrossRefGoogle Scholar
  81. 81.
    Silber SJ, Grudzinskas G, Gosden RG (2008) Successful pregnancy after microsurgical transplantation of an intact ovary. N Engl J Med 359(24):2617–2618PubMedCrossRefGoogle Scholar
  82. 82.
    Oktay K, Karlikaya G (2000) Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med 342(25):1919PubMedCrossRefGoogle Scholar
  83. 83.
    Callejo J, Salvador C, Miralles A, Vilaseca S, Lailla JM, Balasch J (2001) Long-term ovarian function evaluation after autografting by implantation with fresh and frozen-thawed human ovarian tissue. J Clin Endocrinol Metab 86(9):4489–4494PubMedCrossRefGoogle Scholar
  84. 84.
    Gook DA, McCully BA, Edgar DH, McBain JC (2001) Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod 16(3):417–422PubMedCrossRefGoogle Scholar
  85. 85.
    Oktay K, Buyuk E, Veeck L, Zaninovic N, Xu K, Takeuchi T et al (2004) Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet 363(9412):837–840PubMedCrossRefGoogle Scholar
  86. 86.
    Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y et al (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353(3):318–321PubMedCrossRefGoogle Scholar
  87. 87.
    Sanchez-Serrano M, Crespo J, Mirabet V, Cobo AC, Escriba MJ, Simon C et al (2010) Twins born after transplantation of ovarian cortical tissue and oocyte vitrification. Fertil Steril 93(1):268 e11–3PubMedCrossRefGoogle Scholar
  88. 88.
    Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S et al (2013) Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A 110(43):17474–17479PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Parkes AS (1953) Conservation of gonadal tissue for transplantation. Acta Physiol Lat Am 3(2–3):158–161PubMedGoogle Scholar
  90. 90.
    Parkes AS (1956) Grafting of mouse ovarian tissue after freezing and thawing. J Endocrinol 14(3):xxx-–xxxiPubMedGoogle Scholar
  91. 91.
    Parkes AS (1956) Survival time of ovarian homografts in two strains of rats. J Endocrinol 13(2):201–210PubMedCrossRefGoogle Scholar
  92. 92.
    Parkes AS (1957) Viability of ovarian tissue after freezing. Proc R Soc Lond Ser B Biol Sci 147(929):520–528CrossRefGoogle Scholar
  93. 93.
    Parkes AS, Smith AU (1953) Regeneration of rat ovarian tissue grafted after exposure to low temperatures. Proc R Soc Lond Ser B Biol Sci 140(901):455–470CrossRefGoogle Scholar
  94. 94.
    Baird DT, Campbell B, de Souza C, Telfer E (2004) Long-term ovarian function in sheep after ovariectomy and autotransplantation of cryopreserved cortical strips. Eur J Obstet Gynecol Reprod Biol 113(Suppl 1):S55–S59PubMedCrossRefGoogle Scholar
  95. 95.
    Radford JA, Lieberman BA, Brison DR, Smith AR, Critchlow JD, Russell SA et al (2001) Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet 357(9263):1172–1175PubMedCrossRefGoogle Scholar
  96. 96.
    Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J et al (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364(9443):1405–1410PubMedCrossRefGoogle Scholar
  97. 97.
    Donnez J, Dolmans MM (2015) Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet 32:1167–1170. doi: 10.1007/s10815-015-0544-9 Google Scholar
  98. 98.
    Ashwood-Smith MJ (1986) The cryopreservation of human embryos. Hum Reprod 1(5):319–332PubMedGoogle Scholar
  99. 99.
    Hovatta O (2005) Methods for cryopreservation of human ovarian tissue. Reprod Biomed Online 10(6):729–734PubMedCrossRefGoogle Scholar
  100. 100.
    Gandolfi F, Paffoni A, Papasso Brambilla E, Bonetti S, Brevini TA, Ragni G (2006) Efficiency of equilibrium cooling and vitrification procedures for the cryopreservation of ovarian tissue: comparative analysis between human and animal models. Fertil Steril 85(Suppl 1):1150–1156PubMedCrossRefGoogle Scholar
  101. 101.
    Huang L, Mo Y, Wang W, Li Y, Zhang Q, Yang D (2008) Cryopreservation of human ovarian tissue by solid-surface vitrification. Eur J Obstet Gynecol Reprod Biol 139(2):193–198PubMedCrossRefGoogle Scholar
  102. 102.
    Isachenko V, Isachenko E, Rahimi G, Krivokharchenko A, Alabart JL, Nawroth F (2002) Cryopreservation of human ovarian tissue by direct plunging into liquid nitrogen: negative effect of disaccharides in vitrification solution. Cryo Lett 23(5):333–344Google Scholar
  103. 103.
    Isachenko E, Isachenko V, Rahimi G, Nawroth F (2003) Cryopreservation of human ovarian tissue by direct plunging into liquid nitrogen. Eur J Obstet Gynecol Reprod Biol 108(2):186–193PubMedCrossRefGoogle Scholar
  104. 104.
    Rahimi G, Isachenko E, Sauer H, Isachenko V, Wartenberg M, Hescheler J et al (2003) Effect of different vitrification protocols for human ovarian tissue on reactive oxygen species and apoptosis. Reprod Fertil Dev 15(6):343–349PubMedCrossRefGoogle Scholar
  105. 105.
    Isachenko V, Isachenko E, Reinsberg J, Montag M, van der Ven K, Dorn C et al (2007) Cryopreservation of human ovarian tissue: comparison of rapid and conventional freezing. Cryobiology 55(3):261–268PubMedCrossRefGoogle Scholar
  106. 106.
    Isachenko V, Isachenko E, Reinsberg J, Montag M, Weiss J, Braun F et al (2008) Simplified technique of human ovarian tissue freezing: quick cooling from -36 degree C. Cryo Lett 29(3):261–268Google Scholar
  107. 107.
    Isachenko V, Isachenko E, Reinsberg J, Montag M, Braun F, van der Ven H (2008) Cryopreservation of human ovarian tissue: effect of spontaneous and initiated ice formation. Reprod Biomed Online 16(3):336–345PubMedCrossRefGoogle Scholar
  108. 108.
    Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R (1996) Low temperature storage and grafting of human ovarian tissue. Hum Reprod 11(7):1487–1491PubMedCrossRefGoogle Scholar
  109. 109.
    Newton H, Fisher J, Arnold JR, Pegg DE, Faddy MJ, Gosden RG (1998) Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum Reprod 13(2):376–380PubMedCrossRefGoogle Scholar
  110. 110.
    Candy CJ, Wood MJ, Whittingham DG (1997) Effect of cryoprotectants on the survival of follicles in frozen mouse ovaries. J Reprod Fertil 110(1):11–19PubMedCrossRefGoogle Scholar
  111. 111.
    Herraiz S, Novella-Maestre E, Rodriguez B, Diaz C, Sanchez-Serrano M, Mirabet V et al (2014) Improving ovarian tissue cryopreservation for oncologic patients: slow freezing versus vitrification, effect of different procedures and devices. Fertil Steril 101(3):775–784PubMedCrossRefGoogle Scholar
  112. 112.
    Sanchez M, Novella-Maestre E, Teruel J, Ortiz E, Pellicer A (2008) The Valencia Programme for fertility preservation. Clin Trans Oncol: Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex 10(7):433–438CrossRefGoogle Scholar
  113. 113.
    Amorim CA, David A, Van Langendonckt A, Dolmans MM, Donnez J (2011) Vitrification of human ovarian tissue: effect of different solutions and procedures. Fertil Steril 95(3):1094–1097PubMedCrossRefGoogle Scholar
  114. 114.
    Fahy GM, Wowk B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48(1):22–35PubMedCrossRefGoogle Scholar
  115. 115.
    Gook DA, Edgar DH, Stern C (2004) Cryopreservation of human ovarian tissue. Eur J Obstet Gynecol Reprod Biol 113(Suppl 1):S41–S44PubMedCrossRefGoogle Scholar
  116. 116.
    Gook DA, Edgar DH, Stern C (2000) The effects of cryopreservation regimens on the morphology of human ovarian tissue. Mol Cell Endocrinol 169(1–2):99–103PubMedCrossRefGoogle Scholar
  117. 117.
    Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A et al (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24(7):1670–1683PubMedCrossRefGoogle Scholar
  118. 118.
    Hovatta O, Silye R, Krausz T, Abir R, Margara R, Trew G et al (1996) Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants. Hum Reprod 11(6):1268–1272PubMedCrossRefGoogle Scholar
  119. 119.
    Maltaris T, Koelbl H, Fischl F, Seufert R, Schmidt M, Kohl J et al (2006) Xenotransplantation of human ovarian tissue pieces in gonadotropin-stimulated SCID mice: the effect of ovariectomy. Anticancer Res 26(6B):4171–4176PubMedGoogle Scholar
  120. 120.
    Chen SU, Chien CL, Wu MY, Chen TH, Lai SM, Lin CW et al (2006) Novel direct cover vitrification for cryopreservation of ovarian tissues increases follicle viability and pregnancy capability in mice. Hum Reprod 21(11):2794–2800PubMedCrossRefGoogle Scholar
  121. 121.
    Oktem O, Alper E, Balaban B, Palaoglu E, Peker K, Karakaya C et al (2011) Vitrified human ovaries have fewer primordial follicles and produce less antimullerian hormone than slow-frozen ovaries. Fertil Steril 95(8):2661–2664, e1PubMedCrossRefGoogle Scholar
  122. 122.
    Sheikhi M, Hultenby K, Niklasson B, Lundqvist M, Hovatta O (2011) Clinical grade vitrification of human ovarian tissue: an ultrastructural analysis of follicles and stroma in vitrified tissue. Hum Reprod 26(3):594–603PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Zhou XH, Wu YJ, Shi J, Xia YX, Zheng SS (2010) Cryopreservation of human ovarian tissue: comparison of novel direct cover vitrification and conventional vitrification. Cryobiology 60(2):101–105PubMedCrossRefGoogle Scholar
  124. 124.
    Mazoochi T, Salehnia M, Valojerdi MR, Mowla SJ (2008) Morphologic, ultrastructural, and biochemical identification of apoptosis in vitrified-warmed mouse ovarian tissue. Fertil Steril 90(4 Suppl):1480–1486PubMedCrossRefGoogle Scholar
  125. 125.
    Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S et al (2015) Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod [Research Support, Non-US Gov’t] 30(3):608–615Google Scholar
  126. 126.
    Roux C, Amiot C, Agnani G, Aubard Y, Rohrlich PS, Piver P (2010) Live birth after ovarian tissue autograft in a patient with sickle cell disease treated by allogeneic bone marrow transplantation. Fertil Steril 93(7):2413, e15–9PubMedCrossRefGoogle Scholar
  127. 127.
    Revel A, Laufer N, Ben Meir A, Lebovich M, Mitrani E (2011) Micro-organ ovarian transplantation enables pregnancy: a case report. Hum Reprod 26(5):1097–1103PubMedCrossRefGoogle Scholar
  128. 128.
    Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M et al (2008) Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod 23(10):2266–2272PubMedCrossRefGoogle Scholar
  129. 129.
    Rodriguez-Wallberg KA, Karlstrom PO, Rezapour M, Castellanos E, Hreinsson J, Rasmussen C et al (2015) Full-term newborn after repeated ovarian tissue transplants in a patient treated for Ewing sarcoma by sterilizing pelvic irradiation and chemotherapy. Acta Obstet Gynecol Scand [Case Reports Research Support, Non-US Gov’t] 94(3):324–328CrossRefGoogle Scholar
  130. 130.
    Gook DA, Edgar DH, Stern C (1999) Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1, 2-propanediol. Hum Reprod 14(8):2061–2068PubMedCrossRefGoogle Scholar
  131. 131.
    Stern CJ, Gook D, Hale LG, Agresta F, Oldham J, Rozen G et al (2014) Delivery of twins following heterotopic grafting of frozen-thawed ovarian tissue. Hum Reprod [Comment Letter] 29(8):1828CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Sonia Herraiz
    • 1
    • 2
    • 3
  • Cesar Diaz-Garcia
    • 1
    • 3
    Email author
  • Antonio Pellicer
    • 1
    • 2
    • 3
  1. 1.Reproductive Medicine Research GroupIIS La Fe. La Fe University HospitalValenciaSpain
  2. 2.IVI FoundationValenciaSpain
  3. 3.Department of Pediatrics, Obstetrics and GynecologyUniversity of ValenciaValenciaSpain

Personalised recommendations