Artificial Ovary

  • Christiani A. AmorimEmail author


Survival rates of many malignant diseases are steadily improving, but for patients of childbearing age, fertility restoration often becomes a vital concern after disease remission. In women, treatments such as chemo/radiotherapy can be very harmful to the ovaries, causing loss of both endocrine and reproductive functions. When gonadotoxic treatment cannot be delayed, ovarian tissue cryobanking is the only way of preserving fertility. However, this technique is not advisable for patients with certain types of cancer, since there is a risk of reintroducing malignant cells present in the cryopreserved tissue. For these patients, a safer alternative could be transplantation of isolated preantral follicles back to their natural environment. To encapsulate and protect isolated follicles, a transplantable artificial ovary needs to be created. The main goal of the artificial ovary is to mimic the natural organ, and for this, it should be composed of a matrix that encapsulates and protects not only the isolated follicles but also autologous ovarian cells and bioactive factors, which are necessary for follicle survival and development. The aim of this chapter is to describe this new technology, its indications, advantages, and the different approaches to create it.


Preantral follicles Cancer patients Fertility preservation Ovary Stromal cells 


  1. 1.
    Donnez J, Martinez-Madrid B, Jadoul P et al (2006) Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update 12:519–535CrossRefPubMedGoogle Scholar
  2. 2.
    Donnez J, Dolmans MM (2013) Fertility preservation in women. Nat Rev Endocrinol 9:735–749. doi: 10.1038/nrendo.2013.205 CrossRefPubMedGoogle Scholar
  3. 3.
    Meirow D, Hardan I, Dor J et al (2008) Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum Reprod 23:1007–1013. doi: 10.1093/humrep/den055 CrossRefPubMedGoogle Scholar
  4. 4.
    SEER Stat Fact Sheets: leukemia. In: USA National Cancer Institute at the National Institutes of Health. Accessed 10 May 2015
  5. 5.
    Leukaemia (all subtypes combined) statistics. In: Cancer Research UK. Accessed 10 May 2015
  6. 6.
    Lim DH, Maher ER (2010) Genomic imprinting syndromes and cancer. Adv Genet 70:145–175. doi: 10.1016/B978-0-12-380866-0.60006-X CrossRefPubMedGoogle Scholar
  7. 7.
    Rodgers RJ, Irving-Rodgers HF, Russell DL (2003) Extracellular matrix of the developing ovarian follicle. Reproduction 126:415–424CrossRefPubMedGoogle Scholar
  8. 8.
    Murray AA, Gosden RG, Allison V et al (1998) Effect of androgens on the development of mouse follicles growing in vitro. J Reprod Fertil 113:27–33CrossRefPubMedGoogle Scholar
  9. 9.
    Reynaud K, Cortvrindt R, Smitz J et al (2000) Effects of kit ligand and anti-kit antibody on growth of cultured mouse preantral follicles. Mol Reprod Dev 56:483–494CrossRefPubMedGoogle Scholar
  10. 10.
    Picton HM, Gosden RG (2000) Mol Cell Endocrinol 166:27–35CrossRefPubMedGoogle Scholar
  11. 11.
    Xu M, Kreeger PK, Shea LD et al (2006) Tissue-engineered follicles produce live, fertile offspring. Tissue Eng 12:2739–2746CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gosden RG (1990) Restitution of fertility in sterilized mice by transferring primordial ovarian follicles. Hum Reprod 5:499–504PubMedGoogle Scholar
  13. 13.
    Carroll J, Gosden RG (1993) Transplantation of frozen-thawed mouse primordial ovarian follicles. Hum Reprod 8:1163–1167PubMedGoogle Scholar
  14. 14.
    Dolmans MM, Martinez-Madrid B, Gadisseux E et al (2007) Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction 134:253–262CrossRefPubMedGoogle Scholar
  15. 15.
    Dolmans MM, Yuan WY, Camboni A et al (2008) Development of antral follicles after xenografting of isolated small human preantral follicles. Reprod Biomed Online 16:705–711CrossRefPubMedGoogle Scholar
  16. 16.
    Vanacker J, Luyckx V, Dolmans MM et al (2012) Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials 33:6079–6085. doi: 10.1016/j.biomaterials.2012.05.015 CrossRefPubMedGoogle Scholar
  17. 17.
    Orive G, Carcaboso AM, Hernández RM et al (2005) Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules 6:927–931CrossRefPubMedGoogle Scholar
  18. 18.
    Amorim CA, Van Langendonckt A, David A et al (2009) Survival of human preantral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum Reprod 24:92–99. doi: 10.1093/humrep/den343 CrossRefPubMedGoogle Scholar
  19. 19.
    Vanacker J, Dolmans MM, Luyckx V et al (2014) First transplantation of isolated murine follicles in alginate. Regen Med 9:609–619. doi: 10.2217/rme.14.33 CrossRefPubMedGoogle Scholar
  20. 20.
    Ahmed TA, Griffith M, Hincke M (2007) Characterization and inhibition of fibrin hydrogel-degrading enzymes during development of tissue engineering scaffolds. Tissue Eng 13:1469–1477CrossRefPubMedGoogle Scholar
  21. 21.
    Cho SW, Kim I, Kim SH et al (2006) Enhancement of adipose tissue formation by implantation of adipogenic-differentiated preadipocytes. Biochem Biophys Res Commun 345:588–594CrossRefPubMedGoogle Scholar
  22. 22.
    Birla RK, Borschel GH, Dennis RG et al (2005) Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng 11:803–813CrossRefPubMedGoogle Scholar
  23. 23.
    Mol A, van Lieshout MI, Dam-de Veen CG et al (2005) Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 26:3113–3121CrossRefPubMedGoogle Scholar
  24. 24.
    Alaminos M, Del Carmen Sanchez-Quevedo M, Munoz-Avila JI et al (2006) Construction of a complete rabbit cornea substitute using fibrin-agarose scaffold. Invest Ophthalmol Vis Sci 47:3311–3317Google Scholar
  25. 25.
    Suuronen EJ, Muzakare L, Doillon CJ et al (2006) Promotion of angiogenesis in tissue engineering: developing multicellular matrices with multiple capacities. Int J Artif Organs 29:1148–1157PubMedGoogle Scholar
  26. 26.
    Nieponice A, Maul TM, Cumer JM et al (2007) Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cell within a three-dimensional fibrin matrix. J Biomed Mater Res A 81:523–530CrossRefPubMedGoogle Scholar
  27. 27.
    Rowe SL, Lee S, Stegemann JP (2007) Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater 3:59–67CrossRefPubMedGoogle Scholar
  28. 28.
    Bruns H, Kneser U, Holzhuter S et al (2005) Injectable liver: a novel approach using fibrin as a matrix for culture and intrahepatic transplantation of hepatocytes. Tissue Eng 11:1718–1726CrossRefPubMedGoogle Scholar
  29. 29.
    Sun T, Chan ML, Quek CH et al (2004) Improving mechanical stability and density distribution of hepatocytes microcapsules by fibrin clot and gold nanoparticles. J Biotechnol 111:169–177CrossRefPubMedGoogle Scholar
  30. 30.
    Balestrini JL, Billiar KL (2006) Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. J Biochem 39:2983–2990Google Scholar
  31. 31.
    Hojo M, Inokuchi S, Kidokoro M et al (2003) Induction of vascular endothelial growth factor by a fibrin as dermal substrate for cultured skin substitutes. Plast Reconstr Surg 111:1638–1645CrossRefPubMedGoogle Scholar
  32. 32.
    Eyrich D, Brandle F, Appel B et al (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28:55–65CrossRefPubMedGoogle Scholar
  33. 33.
    Mesa JM, Zaporojan V, Weinand C et al (2006) Tissue engineering cartilage with aged articular chondrocytes in vivo. Plast Reconstr Surg 118:41–49CrossRefPubMedGoogle Scholar
  34. 34.
    Chung YI, Ahn KM, Jeo SH et al (2007) Enhanced bone regeneration with BMP-2 loaded functional nanoparticles-hydrogel complex. J Control Release 121:91–99CrossRefPubMedGoogle Scholar
  35. 35.
    Weinand C, Pomerantseva I, Neville CM et al (2006) Hydrogel-b-TCP scaffolds and stem cells for tissue engineering bone. Bone 38:555–563CrossRefPubMedGoogle Scholar
  36. 36.
    Liu JY, Swartz DD, Peng HF et al (2007) Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res 75:618–628CrossRefPubMedGoogle Scholar
  37. 37.
    Dietrich F, Lelkes PI (2006) Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis 9:111–125CrossRefPubMedGoogle Scholar
  38. 38.
    Ho W, Tawil B, Dunn JC et al (2006) The behavior of human mesenchymal stem cells in 3D fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Eng 12:1587–1595CrossRefPubMedGoogle Scholar
  39. 39.
    Sese N, Cole M, Tawil B (2011) Proliferation of human keratinocytes and cocultured human keratinocytes and fibroblasts in three-dimensional fibrin constructs. Tissue Eng A 17:429–437. doi: 10.1089/ten.TEA.2010.0113 CrossRefGoogle Scholar
  40. 40.
    Luyckx V, Dolmans MM, Vanacker J et al (2013) First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J Ovarian Res 6:83. doi: 10.1186/1757-2215-6-83 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Luyckx V, Dolmans MM, Vanacker J et al (2014) A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril 101:1149–1156. doi: 10.1016/j.fertnstert.2013.12.025 CrossRefPubMedGoogle Scholar
  42. 42.
    Smith RM, Shikanov A, Kniazeva E et al (2014) Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Eng A 20:3021–3030. doi: 10.1089/ten.TEA.2013.0675 CrossRefGoogle Scholar
  43. 43.
    Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14:199–215. doi: 10.1089/ten.teb.2007.0435 CrossRefGoogle Scholar
  44. 44.
    Faulk DM, Johnson SA, Zhang L et al (2014) Role of the extracellular matrix in whole organ engineering. J Cell Physiol 229:984–989. doi: 10.1002/jcp.24532 CrossRefPubMedGoogle Scholar
  45. 45.
    Arenas-Herrera JE, Ko IK, Atala A et al (2013) Decellularization for whole organ bioengineering. Biomed Mater 8:014106. doi: 10.1088/1748-6041/8/1/014106 CrossRefPubMedGoogle Scholar
  46. 46.
    Laronda MM, Jakus AE, Whelan KA (2015) Initiation of puberty in mice following decellularized ovary transplant. Biomaterials 50:20–29. doi: 10.1016/j.biomaterials.2015.01.051 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Badylak SF, Brown BN, Gilbert TW et al (2011) Biologic scaffolds for constructive tissue remodeling. Biomaterials 32:316–319CrossRefPubMedGoogle Scholar
  48. 48.
    Hoganson DM, Owens GE, O’Doherty E et al (2010) Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium. Biomaterials 31:6934–6940. doi: 10.1016/j.biomaterials.2010.05.026 CrossRefPubMedGoogle Scholar
  49. 49.
    Voytik-Harbin SL, Brightman AO, Kraine MR et al (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67:478–491CrossRefPubMedGoogle Scholar
  50. 50.
    Viswanath A, Germain L, Shakesheff K et al (2015) Hydrogen derived from decellularized bovine ovarian extracellular matrix; (Abstract 1492). Presented at the 4th TERMIS World Congress, 8 September 2015, Boston, MA, USAGoogle Scholar
  51. 51.
    Tagler DJ, Shea LD, Woodruff TK (2011) Contributions of ovarian cells to follicle culture. In: Donnez J, Kim SS (eds) Principles and practice of fertility preservation, 1st edn. Cambridge University Press, Cambridge, pp 409–420CrossRefGoogle Scholar
  52. 52.
    Young JM, McNeilly AS (2010) Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489–504. doi: 10.1530/REP-10-0094 CrossRefPubMedGoogle Scholar
  53. 53.
    Soares M, Sahrari K, Chiti MC et al (2015) The best source of isolated stromal cells for the artificial ovary: medulla or cortex, cryopreserved or fresh? Hum Reprod 30(7):1589–1598Google Scholar
  54. 54.
    Dath C, Dethy A, Van Langendonckt A et al (2011) Endothelial cells are essential for ovarian stromal tissue restructuring after xenotransplantation of isolated ovarian stromal cells. Hum Reprod 26:1431–1439. doi: 10.1093/humrep/der073 CrossRefPubMedGoogle Scholar
  55. 55.
    Orisaka M, Tajima K, Mizutani T et al (2006) Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Bio Reprod 75:734–740CrossRefGoogle Scholar
  56. 56.
    Dudás J, Ramadori G, Knittel T (2000) Effect of heparin and liver heparan sulphate on interaction of HepG2-derived transcription factors and their cis-acting elements: altered potential of hepatocellular carcinoma heparan sulphate. Biochem J 1:245–251CrossRefGoogle Scholar
  57. 57.
    Smitz J, Dolmans MM, Donnez J et al (2010) Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 16:395–414. doi: 10.1093/humupd/dmp056 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Dolmans MM, Michaux N, Camboni A et al (2006) Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum Reprod 21:413–420CrossRefPubMedGoogle Scholar
  59. 59.
    Laronda MM, Duncan FE, Hornick JE et al (2014) Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet 31:1013–1028CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vanacker J, Camboni A, Dath C et al (2011) Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting. Fertil Steril 96:379–383.e3. doi: 10.1016/j.fertnstert.2011.05.075 CrossRefPubMedGoogle Scholar
  61. 61.
    Soares M, Sahrari K, Amorim CA et al (2015) Evaluation of a human ovarian follicle isolation technique to obtain disease-free follicle suspensions before safely grafting to cancer patients. Fertil Steril 104(3):672–680.e2Google Scholar
  62. 62.
    Soares M, Saussoy P, Sahrari K et al (2015) Is transplantation of a few leukemic cells inside an artificial ovary able to induce leukemia in an experimental model? J Assist Reprod Genet 32:597–606. doi: 10.1007/s10815-015-0438-x CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Amorim CA (2011) Artificial ovary. In: Donnez J, Kim SS (eds) Principles and practice of fertility preservation, 1st edn. Cambridge University Press, Cambridge, pp 448–458CrossRefGoogle Scholar
  64. 64.
    Newton H, Aubard Y, Rutherford et al (1996) Low temperature storage and grafting of human ovarian tissue. Hum Reprod 11:1487–1491CrossRefPubMedGoogle Scholar
  65. 65.
    Aubard Y, Piver P, Cogni Y et al (1999) Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod 14:2149–2154CrossRefPubMedGoogle Scholar
  66. 66.
    Baird DT, Webb R, Campbell BK et al (1999) Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 °C. Endocrinology 140:462–471PubMedGoogle Scholar
  67. 67.
    Zhang Z, Wang ZX, Liu S (2004) Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses. Biomaterials 25:177–187CrossRefPubMedGoogle Scholar
  68. 68.
    Bergmann NM, West JL (2008) Histogenesis in three-dimensional scaffolds. In: Atala A, Lanza R, Thomson JA et al (eds) Principles of regenerative medicine. Academic, Burlington, pp 686–703CrossRefGoogle Scholar
  69. 69.
    Shi H, Han C, Mao Z et al (2008) Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng A 14:1775–1785CrossRefGoogle Scholar
  70. 70.
    Peters A, Baruch Y, Weisbuch F et al (2003) Enhancing the vascularization of three-dimensional porous alginate by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65:489–497Google Scholar
  71. 71.
    Tanihara M, Suzuki Y, Yamamoto E et al (2001) Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J Biomed Mater Res 56:216–221CrossRefPubMedGoogle Scholar
  72. 72.
    Chen RR, Silva EA, Yuen WW et al (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264CrossRefPubMedGoogle Scholar
  73. 73.
    Gigli I, Cushman RA, Wahl CM et al (2005) Evidence for a role for anti-Mullerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane. Mol Reprod Dev 71:480–488CrossRefPubMedGoogle Scholar
  74. 74.
    Camboni A, Martinez-Madrid B, Dolmans MM et al (2008) Autotransplantation of frozen-thawed ovarian tissue in a young woman: ultrastructure and viability of grafted tissue. Fertil Steril 90:1215–1218CrossRefPubMedGoogle Scholar
  75. 75.
    Keros V, Xella S, Hultenby K et al (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24:1670–1683CrossRefPubMedGoogle Scholar
  76. 76.
    Nisolle M, Casanas-Roux F, Qu J et al (2000) Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril 74:122–129CrossRefPubMedGoogle Scholar
  77. 77.
    Nottola SA, Camboni A, Van Langendonckt A et al (2008) Cryopreservation and xenotransplantation of human ovarian tissue: an ultrastructural study. Fertil Steril 90:23–32CrossRefPubMedGoogle Scholar
  78. 78.
    Laschke MW, Menger MD, Vollmar B (2002) Ovariectomy improves neovascularisation and microcirculation of freely transplanted ovarian follicles. J Endocrinol 172:535–544CrossRefPubMedGoogle Scholar
  79. 79.
    Amorim CA, Gonçalves PB, Figueiredo JR (2003) Cryopreservation of oocytes from pre-antral follicles. Hum Reprod Update 9:119–129CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations