IVA and Ovarian Tissue Cryopreservation

  • Kazuhiro KawamuraEmail author


Ovarian primordial follicles do not regenerate and proliferate in vivo, and their number decreases with aging as well as with certain pathogeneses. When the number of residual follicles decreases to a threshold level, the initial step of follicle development, namely, the activation of dormant follicles, is disturbed and subsequent follicle growth is suppressed resulting in anovulation and amenorrhea with high gonadotropin levels. If the amenorrhea occurs before 40 years of age, these patients are diagnosed as primary ovarian insufficiency (POI). POI patients show infertility and symptoms caused by estrogen deficiency. So far, donor egg is an only option for effective infertility treatment in patients with POI; we sought to develop a new approach for infertility treatment using their own eggs. Although POI patients still have dormant residual follicles, they are resistant to endogenous signals for activation. Thus, we attempted to activate the residual follicles in vitro. Because the exact mechanisms of the activation of dormant primordial follicles still remain to be determined, we focused on intracellular signaling in the activation process and succeeded in activating those follicles through the activation of PI3K-Akt-Foxo3 pathway (IVA; in vitro activation). Based on the success of IVA, we performed clinical studies to generate mature oocytes from patients with primary ovarian insufficiency, who had few residual follicles in their ovaries, and we have reported successful pregnancies and a birth following IVA. In this chapter, I show our IVA approach and discuss future possibilities for the infertility treatment in patients with diminished ovarian reserve.


In vitro activation Primary ovarian insufficiency Infertility treatment Akt signal Hippo signal 



This work was supported by Grant-In-Aid for Scientific Research (Challenging Exploratory Research: 15K15613, and Innovative Areas, Mechanisms regulating gamete formation in animals: 26114510) and by research funds from the Grant for Fertility Innovation, the Smoking Research Foundation, and the Takeda Science Foundation. None of the authors has a conflict of interest.


  1. 1.
    Macklon NS, Fauser BC (1999) Aspects of ovarian follicle development throughout life. Horm Res 52:161–170. doi: 10.1159/000023456 CrossRefPubMedGoogle Scholar
  2. 2.
    Coulam CB, Stringfellow S, Hoefnagel D (1983) Evidence for a genetic factor in the etiology of premature ovarian failure. Fertil Steril 40:693–695CrossRefPubMedGoogle Scholar
  3. 3.
    Nelson LM (2009) Clinical practice. Primary ovarian insufficiency. N Engl J Med 360:606–614. doi: 10.1056/NEJMcp0808697 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    De Vos M, Devroey P, Fauser BC (2010) Primary ovarian insufficiency. Lancet 376:911–921. doi: 10.1016/S0140-6736(10)60355-8 CrossRefPubMedGoogle Scholar
  5. 5.
    McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214. doi: 10.1210/edrv.21.2.0394 PubMedGoogle Scholar
  6. 6.
    Reddy P, Liu L, Adhikari D et al (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613. doi: 10.1126/science.1152257 CrossRefPubMedGoogle Scholar
  7. 7.
    John GB, Gallardo TD, Shirley LJ, Castrillon DH (2008) Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 321:197–204. doi: 10.1016/j-ydbio.2008.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Adhikari D, Liu K (2009) Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev 30:438–464. doi: 10.1210/er.2008-0048 CrossRefPubMedGoogle Scholar
  9. 9.
    Castrillon DH, Miao L, Kollipara R et al (2003) Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301:215–218. doi: 10.1126/science.1086336 CrossRefPubMedGoogle Scholar
  10. 10.
    Li J, Kawamura K, Cheng Y et al (2010) Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci U S A 107:10280–10284. doi: 10.1073/pnas.1001198107 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kawamura K, Cheng Y, Suzuki N et al (2013) Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A 110:17474–17479. doi: 10.1073/pnas.1312830110 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Adhikari D, Gorre N, Risal S et al (2012) The safe use of a PTEN inhibitor for the activation of dormant mouse primordial follicles and generation of fertilizable eggs. PLoS One 7:e39034. doi: 10.1371/jounal.pone.0039034 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pan D (2007) Hippo signaling in organ size control. Genes Dev 21:886–897. doi: 10.1101/gad.1536007 CrossRefPubMedGoogle Scholar
  14. 14.
    Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138:9–22. doi: 10.1242/dev.045500 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hergovich A (2012) Mammalian Hippo signalling: a kinase network regulated by proteinprotein interactions. Biochem Soc Trans 40:124–128. doi: 10.1042/BST20110619 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Holbourn KP, Acharya KR, Perbal B (2008) The CCN family of proteins: structure-function relationships. Trends Biochem Sci 33:461–473. doi: 10.1016/j.tibs.2008.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sansores Garcia L, Bossuyt W, Wada K et al (2012) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30:2325–2335. doi: 10.1038/emboj.2011.157 CrossRefGoogle Scholar
  18. 18.
    Fernandez BG, Gasoar P, Bras Pereira C et al (2012) Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in drosophila. Development 138:2337–2346. doi: 10.1242/dev.063545 CrossRefGoogle Scholar
  19. 19.
    Hsueh AJ, Kawamura K, Cheng Y, Fauser BC (2015) Intraovarian control of early folliculogenesis. Endocr Rev 36(1):1–24. doi: 10.1210/er.2014-1020 CrossRefPubMedGoogle Scholar
  20. 20.
    Suzuki N, Yoshioka N, Takae S et al (2015) Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod 30(3):608–615. doi: 10.1093/humrep/deu353 CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng Y, Feng Y, Jansson L et al (2015) Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J 29(6):2423–2430. doi: 10.1096/fj.14-267856 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologySt. Marianna University School of MedicineKawasakiJapan

Personalised recommendations