Oocyte Cryopreservation

  • Javier DomingoEmail author
  • Ana Cobo
  • Antonio Pellicer


Fertility preservation has become an emerging discipline for any patient whose reproductive function is threatened. Oocyte vitrification is an established method that provides an excellent clinical outcome. It has become an important part of cancer treatment, but also for other non-oncological reasons, with age or the delay of motherhood as the most frequent reasons nowadays for patients to vitrify their oocytes in order to avoid the age-related infertility. Oocyte vitrification is also useful in different gynecological situations in the clinical practice in assisted reproductive technology (ART) where the delayed embryo transfer should be recommended, such as high risk of hyperstimulation syndrome, bleeding, or the presence of hydrosalpinx or polyps. Clinical pregnancy rates in both cancer and social indications are similar to those observed in conventional IVF treatments, with no increase in adverse obstetric and perinatal outcomes in children conceived from vitrified oocytes or embryos. But there are some limitations that must be known: limited number of IVF cycles depending on the number of vitrified MII oocytes, and survival rates after warming or the outcome of IVF with vitrified oocytes are highly dependent on maternal age at the time of freezing.


Oocyte Cryopreservation Vitrification Fertility preservation 


  1. 1.
    Surveillance, Epidemiology and End Results Program, 1975–2003, Division of Cancer Control and Population Sciences, National Cancer Institute, 2006Google Scholar
  2. 2.
  3. 3.
    Domingo J, Cobo A, Sánchez M et al (2011) Principles and practice of fertility preservation. In: Donnez, Kim (eds) Principles and practice of fertility preservation. Cambridge University Press, New York, pp 23–34CrossRefGoogle Scholar
  4. 4.
    Cobo A, Domingo J, Pérez S et al (2008) Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol 10:268–273CrossRefPubMedGoogle Scholar
  5. 5.
    Jeruss JS, Woodruff TK (2009) Preservation of fertility in patients with cancer. N Engl J Med 360:902–911. doi: 10.1056/NEJMra0801454 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Humaidan P, Kol S, Papanikolaou EG (2011) GnRH agonist for triggering of final oocyte maturation: time for a change of practice? Hum Reprod Update 17:510–524. doi: 10.1093/humupd/dmr008 CrossRefPubMedGoogle Scholar
  7. 7.
    Ethics Committee of the American Society for Reproductive Medicine (2005) Fertility preservation and reproduction in cancer patients. Fertil Steril 83:1622–1628CrossRefGoogle Scholar
  8. 8.
    The Practice Committees of the ASRM and SART (2013) Mature oocyte cryopreservation: a guideline. Fertil Steril 99:37–43. doi: 10.1016/j.fertnstert.2012.09.028 CrossRefGoogle Scholar
  9. 9.
    Dolmans MM, Luyckx V, Donnez J et al (2013) Risk of transferring malignant cells with transplanted frozen thawed ovarian tissue. Fertil Steril 99:1514–1522. doi: 10.1016/j.fertnstert.2013.03.027 CrossRefPubMedGoogle Scholar
  10. 10.
    Cao Y, Xing Q, Zhang ZG et al (2009) Cryopreservation of immature and in vitro matured oocytes by vitrification. Reprod Biomed Online 19:369–373CrossRefPubMedGoogle Scholar
  11. 11.
    Cobo A, Diaz C (2011) Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 96:277–285. doi: 10.1016/j.fertnstert.2011.06.030 CrossRefPubMedGoogle Scholar
  12. 12.
    Cobo A, Kuwayama M, Pérez S et al (2008) Comparison of concomitant outcome achieved with fresh and cryopreserved oocytes vitrified by the Cryotop method. Fertil Steril 89:1657–1664CrossRefPubMedGoogle Scholar
  13. 13.
    Kuwayama M, Vajta G, Kato O et al (2005) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 11:300–308CrossRefPubMedGoogle Scholar
  14. 14.
    Tao T, del Valle A (2008) Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet 25:287–296. doi: 10.1007/s10815-008-9236-z CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vajta G, Nagy ZP (2006) Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online 12:779–796CrossRefPubMedGoogle Scholar
  16. 16.
    Cobo A, Meseguer M, Remohí J et al (2010) Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod 25:2239–2246. doi: 10.1093/humrep/deq146 CrossRefPubMedGoogle Scholar
  17. 17.
    Bielanski A, Nadin-Davis S, Sapp T et al (2000) Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology 40:110–116CrossRefPubMedGoogle Scholar
  18. 18.
    Parmegiani L, Accorsi A, Cognigni GE et al (2010) Sterilization of liquid nitrogen with ultraviolet irradiation for safe vitrification of human oocytes or embryos. Fertil Steril 94:1525–1528. doi: 10.1016/j.fertnstert.2009.05.089 CrossRefPubMedGoogle Scholar
  19. 19.
    Cobo A, Romero JL, Perez S et al (2010) Storage of human oocytes in the vapor phase of nitrogen. Fertil Steril 94:1903–1907. doi: 10.1016/j.fertnstert.2009.10.042 CrossRefPubMedGoogle Scholar
  20. 20.
    Boiso I, Marti M, Santalo J et al (2002) A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum Reprod 17:1885–1891CrossRefPubMedGoogle Scholar
  21. 21.
    Forman EJ, Li X, Ferry KM et al (2012) Oocyte vitrification does not increase the risk of embryonic aneuploidy or diminish the implantation potential of blastocysts created after ICSI: a novel, paired randomized controlled trial using DNA fingerprinting. Fertil Steril 98:644–649. doi: 10.1016/j.fertnstert.2012.04.028 CrossRefPubMedGoogle Scholar
  22. 22.
    Cobo A, Rubio C, Gerli S et al (2001) Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil Steril 75:354–360CrossRefPubMedGoogle Scholar
  23. 23.
    Cobo A, Pérez S, De los Santos MJ et al (2008) Effect of different cryopreservation protocols on the metaphase II spindle in human oocytes. Reprod Biomed Online 173:350–359CrossRefGoogle Scholar
  24. 24.
    Vajta G, Kuwayama M (2006) Improving cryopreservation systems. Theriogenology 65:236–244CrossRefPubMedGoogle Scholar
  25. 25.
    Liebermann J, Dietl J, Vanderzwalmen P et al (2003) Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online 7:623–633CrossRefPubMedGoogle Scholar
  26. 26.
    Larsen EC, Muller J, Schmiegelow K et al (2003) Reduced ovarian function in a long-term survivors of radiation and chemotherapy-treated childhood cancer. J Clin Endocrinol Metab 88:5307–5314CrossRefPubMedGoogle Scholar
  27. 27.
    Meirow D, Nugent D (2001) The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update 7:535–543CrossRefPubMedGoogle Scholar
  28. 28.
    Poniatowski BC, Grimm P, Cohen G (2001) Chemotherapy-induced menopause: a literature review. Cancer Invest 19:641–648CrossRefPubMedGoogle Scholar
  29. 29.
    Brydoy M, Fossa SD, Dahl O et al (2007) Gonadal dysfunction and fertility problems in cancer survivors. Acta Oncol 46:480–489CrossRefPubMedGoogle Scholar
  30. 30.
    Meirow D, Epstein M, Lewis H et al (2001) Administration of cyclophosphamide at different stages of follicular maturation in mice: effects on reproductive performance and fetal malformations. Hum Reprod 16:632–637CrossRefPubMedGoogle Scholar
  31. 31.
    Bromer JG, Patrizio P (2008) Preservation and postponement of female fertility. Placenta 29(Suppl B):200–205. doi: 10.1016/j.placenta.2008.07.005 CrossRefPubMedGoogle Scholar
  32. 32.
    Dupas C, Christin-Maitre S (2008) What are the factors affecting fertility in 2008? Ann Endocrinol 69(Suppl 1):S57–S61. doi: 10.1016/S0003-4266(08)73970-2 CrossRefGoogle Scholar
  33. 33.
    Donnez J, Dolmans MM (2015) Ovarian tissue freezing: current status. Curr Opin Obstet Gynecol 27:222–230. doi: 10.1097/GCO.0000000000000171 CrossRefPubMedGoogle Scholar
  34. 34.
    Cobo A (2012) Oocyte vitrification: a watershed in ART. Fertil Steril 98:600–601. doi: 10.1016/j.fertnstert.2012.07.1096 CrossRefPubMedGoogle Scholar
  35. 35.
    Donnez J (2013) Introduction: fertility preservation, from cancer to benign disease to social reasons: the challenge of the present decade. Fertil Steril 99:1467–1468. doi: 10.1016/j.fertnstert.2013.03.040 CrossRefPubMedGoogle Scholar
  36. 36.
    Cobo A, Bellver J, Domingo J et al (2008) New options in assisted reproduction technology: the Cryotop method of oocyte vitrification. Reprod Biomed Online 17:68–72CrossRefPubMedGoogle Scholar
  37. 37.
    Bodri D, Guillén JJ, Trullenque M et al (2010) Early ovarian hyperstimulation syndrome is completely prevented by gonadotropin releasing-hormone agonist triggering in high-risk oocyte donor cycles: a prospective, luteal-phase follow-up study. Fertil Steril 93:2418–2420. doi: 10.1016/j.fertnstert.2009.08.036 CrossRefPubMedGoogle Scholar
  38. 38.
    Cobo A, Remohí J, Chang CC et al (2011) Oocyte cryopreservation for donor egg banking. Reprod Biomed Online 23:341–346. doi: 10.1016/j.rbmo.2011.05.014 CrossRefPubMedGoogle Scholar
  39. 39.
    Bernatsky S, Clarke A, Suissa S (2008) Hematologic malignant neoplasms after drug exposure in rheumatoid arthritis. Arch Intern Med 168:378–381. doi: 10.1001/archinternmed.2007.107 CrossRefPubMedGoogle Scholar
  40. 40.
    Schroeder JO, Euler H, Loffler H (1987) Synchronization of plasmapheresis and pulse cyclophosphamide in severe systemic lupus erythematosus. Ann Intern Med 107:344–346CrossRefPubMedGoogle Scholar
  41. 41.
    Langford C (2003) Wegener’s granulomatosis: current and upcoming therapies. Arthritis Res Ther 5:180–191CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rauck AM, Grouas AC (1999) Bone marrow transplantation in adolescents. Adolesc Med 10:445–449PubMedGoogle Scholar
  43. 43.
    Berlanda N, Vercellini P, Fedele L (2010) The outcomes of repeat surgery for recurrent symptomatic endometriosis. Curr Opin Obstet Gynecol 22:320–325. doi: 10.1097/GCO.0b013e32833bea15 PubMedGoogle Scholar
  44. 44.
    García-Velasco JA, Somigliana E (2009) Management of endometriomas in women requiring IVF: to touch or not to touch. Hum Reprod 24:496–501. doi: 10.1093/humrep/den398 CrossRefPubMedGoogle Scholar
  45. 45.
    Lau NM, Huang JY, MacDonald S et al (2009) Feasibility of fertility preservation in young females with Turner syndrome. Reprod Biomed Online 18:290–295CrossRefPubMedGoogle Scholar
  46. 46.
    Faluyi O, Mackean M, Gourley C et al (2010) Interventions for the treatment of borderline ovarian tumours. Cochrane Database Syst Rev 8:CD007696. doi: 10.1002/14651858.CD007696.pub2 Google Scholar
  47. 47.
    Herrero L, Pareja S, Aragonés M et al (2014) Oocyte versus embryo vitrification for delayed embryo transfer: an observational study. Reprod Biomed Online 29:567–572. doi: 10.1016/j.rbmo.2014.07.016 CrossRefPubMedGoogle Scholar
  48. 48.
    Humaidan P, Bredkjaer HE, Bungum L et al (2005) GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Hum Reprod 20:1213–1220CrossRefPubMedGoogle Scholar
  49. 49.
    Gurbuz AS, Gode F, Ozcimen N et al (2014) Gonadotrophin-releasing hormone agonist trigger and freeze-all strategy does not prevent severe ovarian hyperstimulation syndrome: a report of three cases. Reprod Biomed Online 29:541–544. doi: 10.1016/j.rbmo.2014.07.022 CrossRefPubMedGoogle Scholar
  50. 50.
    Santos-Ribeiro S, Polyzos NP, Stouffs K et al (2015) Ovarian hyperstimulation syndrome after gonadotropin-releasing hormone agonist triggering and “freeze-all”: in-depth analysis of genetic predisposition. J Assist Reprod Genet 32(7):1063–1068. doi:  10.1007/s10815-015-0498-y Google Scholar
  51. 51.
    Milán M, Cobo AC, Rodrigo L et al (2010) Redefining advanced maternal age as an indication for preimplantation genetic screening. Reprod Biomed Online 21:649–657. doi: 10.1016/j.rbmo.2010.06.020 CrossRefPubMedGoogle Scholar
  52. 52.
    Cobo A, Garrido N, Crespo J et al (2012) Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online 24:424–432. doi: 10.1016/j.rbmo.2011.12.012 CrossRefPubMedGoogle Scholar
  53. 53.
  54. 54.
    Nyboe Andersen A, Goossens V, Bhattacharya S et al (2009) Assisted reproductive technology and intrauterine inseminations in Europe, 2005: results generated from European registers by ESHRE: ESHRE. The European IVF Monitoring Programme (EIM), for the European Society of Human Reproduction and Embryology. Hum Reprod 24:1267–1287. doi: 10.1093/humrep/dep035 CrossRefPubMedGoogle Scholar
  55. 55.
    ESHRE Task Force on Ethics and Law, Dondorp W, deWert G et al (2012) Oocyte cryopreservation for age-related fertility loss. Hum Reprod 27:1231–1237. doi: 10.1093/humrep/des029 CrossRefGoogle Scholar
  56. 56.
    Stoop D, Cobo A, Silber S (2014) Fertility preservation for age-related fertility decline. Lancet 384:1311–1319. doi: 10.1016/S0140-6736(14)61261-7 CrossRefPubMedGoogle Scholar
  57. 57.
    Edgar DH, Gook DA (2012) A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update 18:536–554. doi: 10.1093/humupd/dms016 CrossRefPubMedGoogle Scholar
  58. 58.
    Rienzi L, Romano S, Albricci L et al (2010) Embryo development of fresh vs vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod 25:66–73. doi: 10.1093/humrep/dep346 CrossRefPubMedGoogle Scholar
  59. 59.
    Levi PE, Albani E, Morenghi E et al (2013) Comparative analysis of fetal and neonatal outcomes of pregnancies from fresh and cryopreserved/thawed oocytes in the same group of patients. Fertil Steril 100:396–401. doi: 10.1016/j.fertnstert.2013.03.038 CrossRefGoogle Scholar
  60. 60.
    Cobo A, Serra V, Garrido N et al (2014) Obstetric and perinatal outcome of babies born from vitrified oocytes. Fertil Steril 102:1006–1015. doi: 10.1016/j.fertnstert.2014.06.019 CrossRefPubMedGoogle Scholar
  61. 61.
    Rienzi L, Cobo A, Paffoni A et al (2012) Consistent and predictable delivery rates after oocyte vitrification: an observational longitudinal cohort multicentric study. Hum Reprod 17:1606–1612. doi: 10.1093/humrep/des088 CrossRefGoogle Scholar
  62. 62.
    Sonmezer M, Oktay K (2006) Fertility preservation in young women undergoing breast cancer therapy. Oncologist 11:422–434CrossRefPubMedGoogle Scholar
  63. 63.
    Platet N, Cathiard AM, Gleizes M et al (2004) Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol 51:55–67CrossRefPubMedGoogle Scholar
  64. 64.
    Butt AJ, Caldon CE, McNeil CM et al (2008) Cell cycle machinery: links with genesis and treatment of breast cancer. Adv Exp Med Biol 630:189–205CrossRefPubMedGoogle Scholar
  65. 65.
    Boukaidi SA, Cooley A, Hardy A et al (2012) Impact of infertility regimens on breast cancer cells: follicle-stimulating hormone and luteinizing hormone lack a direct effect on breast cell proliferation in vitro. Fertil Steril 97:440–444. doi: 10.1016/j.fertnstert.2011.11.020 CrossRefPubMedGoogle Scholar
  66. 66.
    Oktay K, Hourvitz A, Sahin G et al (2006) Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab 91:3885–3890CrossRefPubMedGoogle Scholar
  67. 67.
    Azim AA, Costantini-Ferrando M, Oktay K (2008) Safety of fertility preservation by ovarian stimulation with letrozole and gonadotropins in patients with breast cancer: a prospective controlled study. J Clin Oncol 26:2630–2635. doi: 10.1200/JCO.2007.14.8700 CrossRefPubMedGoogle Scholar
  68. 68.
    GarcíaVelasco JA, Moreno L, Pacheco A et al (2005) Aromatase inhibitor letrozole increases the concentration of intraovarian androgens and improves in vitro fertilization outcome in low responder patients: a pilot study. Fertil Steril 84:82–87CrossRefGoogle Scholar
  69. 69.
    Domingo J, Guillén V, Ayllón Y et al (2013) Ovarian response to controlled ovarian hyperstimulation in cancer patients is diminished even before oncological treatment. Fertil Steril 97:930–934. doi: 10.1016/j.fertnstert.2012.01.093 CrossRefGoogle Scholar
  70. 70.
    Cakmak H, Katz A, Cedars MI et al (2013) Effective method for emergency fertility preservation: random-start controlled ovarian stimulation. Fertil Steril 100:1673–1680. doi: 10.1016/j.fertnstert.2013.07.1992 CrossRefPubMedGoogle Scholar
  71. 71.
    Kuang Y, Hong Q, Chen Q et al (2014) Luteal-phase ovarian stimulation is feasible for producing competent oocytes in women undergoing in vitro fertilization/intracytoplasmic sperm injection treatment, with optimal pregnancy outcomes in frozen-thawed embryo transfer cycles. Fertil Steril 101:105–111. doi: 10.1016/j.fertnstert.2013.09.007 CrossRefPubMedGoogle Scholar
  72. 72.
    García-Velasco JA, Domingo J, Cobo A et al (2013) 5-years experience employing oocyte vitrification to preserve fertility for medical and non-medical indications. Fertil Steril 99:1994–1999. doi: 10.1016/j.fertnstert.2013.02.004 CrossRefPubMedGoogle Scholar
  73. 73.
    Cil AP, Bang H, Oktay K (2013) Age-specific probability of live birth with oocyte cryopreservation: an individual patient data meta-analysis. Fertil Steril 100:492–499. doi: 10.1016/j.fertnstert.2013.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lawrenz B, Jauckus J, Kupka MS et al (2011) Fertility preservation in >1,000 patients: patient’s characteristics, spectrum, efficacy and risks of applied preservation techniques. Arch Gynecol Obstet 283:651–656. doi: 10.1007/s00404-010-1772-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.IVI Las PalmasLas Palmas de Gran CanariaSpain
  2. 2.IVI ValenciaValenciaSpain
  3. 3.University and Polytechnic Hospital La FeValenciaSpain
  4. 4.University Medical SchoolValenciaSpain

Personalised recommendations