Skip to main content

Hydrogen Production

  • 1680 Accesses


Hydrogen production methods to meet hydrogen demand as a future fuel are considered. Current hydrogen production methods are described, and energy efficiency, CO2 emissions, and cost are discussed. After estimating possible future hydrogen use and demand, various hydrogen production methods meeting future hydrogen demand are addressed and their prospects considered.

A brief conclusion is that future demand for hydrogen fuel cell electric vehicles can be met by conventional fossil fuel-based hydrogen production methods, but novel low-carbon techniques for this production using biomass, renewable energy-based electrolysis, thermochemical methods, and photoelectrochemical water splitting are important to reduce CO2 emissions. The introduction of hydrogen energy provides benefits of energy saving, renewable energy use, and stabilization of energy security.


  • Fossil fuel-based hydrogen
  • Low-carbon hydrogen
  • GHG emission
  • FCEV
  • Water splitting

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-55951-1_9
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-55951-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Press release on Nov. 18, 2014 from Toyota Motor Corporation (in Japanese).

  2. Press release on Nov. 17, 2014 of Honda Motor Co., Ltd. (in Japanese).

  3. New Energy and Industrial Technology Development Organization (NEDO) Hydrogen energy white paper (Suiso Energy Hakusho), July 28, 2014

  4. Mizuho Information and Research Institute, FY2012 report: a study on present and future status of hydrogen demand and supply

  5. Agency for Natural Resources and Energy. Hydrogen production, transportation and storage.

  6. Mizuho Information and Research Institute. Yusouyou nenryou no well-to-weel hyouka. (2004).

  7. U.S. Department of Energy. Production case studies. Accessed 7 Nov 2014

  8. Japan Hydrogen and Fuel Cell Demonstration Project, Japan Automobile Research Institute (2011) Sougou kouritu to GHG haisyutu no bunnseki houkokusyo.

  9. Institute of Energy Economics Japan (2009) Zidousyayou nennryou tositeno suiso enerugi- no gennzyou to konngo no doukou ni tuite.

  10. Federation of Electric Power Companies Japan (2014) Denjiren kaicyou teirei kaiken yousi.,pp.5

  11. Japan Hydrogen and Fuel Cell Demonstration Project (2011) Nenryou denchi sisutemu tou zissyou kennkyuu houkokusyo.

  12. Energy and Environment Council (2011) kosuto tou kenshou iinkai houkokusho.


  14. Fuel Cell Commercialization Conference of Japan (2010) Commercialization scenario for FCVs and H2 stations.

  15. Shirasaki Y, Tsuneki T, Ota Y, Yasuda I, Tachibana S, Nakajima H, Kobayashi K (2009) Int J Hydrog Energy 34(10):4482–4487

    CrossRef  Google Scholar 

  16. Tajima M (n.d.) Fukuoka strategy conference for hydrogen energy, presentation slides, p 29.

  17. A report from Ministry of Land, Infrastructure, Transport and Tourism.

  18. NIST-JANAF Tables.

  19. Funk JE (2001) Int J Hydrog Energy 26(3):185–190

    CrossRef  MathSciNet  Google Scholar 

  20. Kameyama H, Sakurai M, Masuda A, Fukui T (2012) Hydrogen Energy System, 37 3-10 (in Japanese)

    Google Scholar 

  21. Kasahara S, Tanaka N, Noguchi H, Iwatsuki J, Takegami H, Yan X L, Kubo S (2014) Proceedings of the HTR 2014, Weihai, China, October 27-31, ,Paper HTR2014-21233

    Google Scholar 

  22. JAEA. Nuclear energy vision 2100 -towards a low carbon society-, 2008 (in Japanese).

  23. Germany Energy Agency. Power to gas strategy platform.

  24. Matsumoto H, Kwati Leonard (2014) Catalyst (Shokubai), 56:296–299

    Google Scholar 

  25. NEDO, project on hydrogen utiliation.

  26. Fujishima A, Honda K (1972) Nature 238:37–38

    CrossRef  Google Scholar 

  27. NEDO, news release, March 31, 2015.

  28. Yoshino Y, Harada E, Inoue K, Yoshimura K, Yamashita S, Hakamada K (2012) Energy Procedia 29:701–709

    CrossRef  Google Scholar 

  29. Okada Y, Sasaki E, Watanabe E, Hyodo S, Nishijima H (2006) Int J Hydrog Energy 31:1348–1356

    CrossRef  Google Scholar 

  30. Nayak PK, Cahen D (2014) Adv Mater 26:1622–1628

    CrossRef  Google Scholar 

  31. Haryu E et al (2011) Honda R&D Tech Rev 23(2):90–97

    Google Scholar 

Download references


Prof. Masaki Tajima of Kyushu University and Dr. Yoshiyuki Inagaki of the Japan Atomic Energy Agency are acknowledged for data and figures used in Sects. 3.2.2 and 3.2.3.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hiroshige Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Matsumoto, H., Kimura, S., Itaoka, K., Inoue, G. (2016). Hydrogen Production. In: Kato, Y., Koyama, M., Fukushima, Y., Nakagaki, T. (eds) Energy Technology Roadmaps of Japan. Springer, Tokyo.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55949-8

  • Online ISBN: 978-4-431-55951-1

  • eBook Packages: EnergyEnergy (R0)